勾股弦兒歌

勾股定理中的 勾、股、弦 分別指哪三邊
4個回答2023-10-27 05:15
勾股定理中的“勾”指的是直角三角形短直角耐伍邊、“股”指的是直角三角形長直角邊、“弦”指饑?yán)系氖侵苯侨菭€畝升形的斜邊。
請找勾股弦數(shù)
1個回答2023-10-01 14:36
m=11
另外兩個手大數(shù)為:畢做豎1/2*(m^2-1)=60;
1/胡旅2*(m^2+1)=61
即:11^2+60^2=61^2
趙爽弦圖怎么證明勾股定理
1個回答2024-09-29 00:03

趙爽弦圖證明勾股定理

趙爽弦圖是用四個全等的直角三角形圍成一個邊長為c的正方形,在圖中間有一個邊長為b–a的小正方形,這樣就可以證明勾股定理了。

邊長為c的正方形面積S=c^2=1/2ab·4+(b-a)^2,

所以 c^2=2ab+a^2+b^2-2ab,

所以 c^2=a^2+b^2,定理得證。

再在正方形c的外面拼接四個一樣的全等直角三角形,就有一個邊長a+b的正方形如圖,也可以證明勾股定理。

a+b邊長的正方形的面積S=1/2ab·4+c^2=ab·4+(b-a)^2,2ab+c^2=4ab+a^2+b^2-2ab,

所以 c^2=a^2+b^2。定理得證。

也可以用鄒元治的方法證明,即:a+b的正方形的面積S=(a+b)^2=c^2+1/2ab·4

所以,a^2+b^2+2ab=c^2+2ab,得:a^2+b^2=c^2,定理得證。

勾三股四弦五 具體指什么
3個回答2023-07-29 14:51
勾三股四玄五就是勾股定律
勾股定律
表示直角三角賣顫形邊之間的關(guān)系.
如斜邊為c,兩直角邊為a,b,且a為中鄭敗角A所對的角
則:c^2=a^2+b^2
正弦定理:
a=c*sina
余弦叢知定理:
b=c*cosa
關(guān)于勾股定理的故事
1個回答2024-02-28 20:52
中國最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開頭,記載著一段周公向商高請教數(shù)學(xué)知識的對話:
  周公問:“我聽說您對數(shù)學(xué)非常精通,我想請教一下:天沒有梯子可以上去,地也沒法用尺子去一段一段丈量,那么怎樣才能得到關(guān)于天地得到數(shù)據(jù)呢?”
  
商高回答說:“數(shù)的產(chǎn)生來源于對方和圓這些形體的認(rèn)識。其中有一條原理:當(dāng)直角三角形‘矩’得到的一條直角邊‘勾’等于3,另一條直角邊‘股’等于4的時候,那么它的斜邊‘弦’就必定是5。這個原理是大禹在治水的時候就總結(jié)出來的呵?!?br/>  
從上面所引的這段對話中,我們可以清楚地看到,我國古代的人民早在幾千年以前就已經(jīng)發(fā)現(xiàn)并應(yīng)用勾股定理這一重要懂得數(shù)學(xué)原理了。稍懂平面幾何的讀者都知道,所謂勾股定理,就是指在直角三角形中,兩條直角邊的平方和等于斜邊的平方。
勾股數(shù)有哪些
1個回答2024-02-24 05:02
勾股數(shù)又名畢氏三元數(shù) 。勾股數(shù)就是可以構(gòu)成一個直角三角形三邊的一組正整數(shù)。
常見的特殊勾股數(shù):3 4 5;5 12 13; 6 8 10;8,15,17;9 12 15;7 24 25;9 40 41;10 24 26;11 60 61;12 16 20;12 35 37;13 84 85;14 48 50;15 20 25;15 36 39;15 112 113;16 30 34;16 63 65;18 24 30;18 80 82;20 21 29;20 48 52;20 99 101;21 28 35;21 72 75;22 120 122;24 32 40;24 45 51;24 70 74;25 60 65;27 36 45;28 45 53;30 40 50;30 72 78;32 60 68;33 44 55;33 56 65;35 84 91;36 48 60;36 77 85;39 52 65;39 80 89;40 42 58;40 75 85 ;40 96 104;42 56 70 ; 45 60 75 ; 48 55 73 ; 48 64 80 ; 48 90 102 ; 51 68 85 ;54 72 90 ; 56 90 106 ; 57 76 95 ; 60 63 87 ; 60 80 100 ;60 91 109 ; 63 84 105 ; 65 72 97 ; 66 88 110 ; 69 92 115 ;72 96 120 ; 75 100 125 ; 80 84 116等等。
勾股數(shù)滿足勾股定理。
勾股定理是一個基本的幾何定理,指直角三角形的兩條直角邊的平方和等于斜邊的平方。中國古代稱直角三角形為勾股形,并且直角邊中較小者為勾,另一長直角邊為股,斜邊為弦,所以稱這個定理為勾股定理,也有人稱商高定理。
勾股定理現(xiàn)約有500種證明方法,是數(shù)學(xué)定理中證明方法最多的定理之一。勾股定理是人類早期發(fā)現(xiàn)并證明的重要數(shù)學(xué)定理之一,用代數(shù)思想解決幾何問題的最重要的工具之一,也是數(shù)形結(jié)合的紐帶之一。在中國,商朝時期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并證明此定理的為公元前6世紀(jì)古希臘的畢達(dá)哥拉斯學(xué)派,他用演繹法證明了直角三角形斜邊平方等于兩直角邊平方之和。
數(shù)學(xué)中的勾股定理是怎么講
1個回答2024-02-25 03:13
勾股定理是一個基本的幾何定穗做理皮弊,直角三角形兩直角邊(即“勾”,“股”)邊長平方和猜握衡等于斜邊(即“弦”)邊長的平方。
勾股定理的故事
1個回答2024-02-13 15:06
勾股定理趣事
學(xué)過幾何的人都知道勾股定理.它是幾何中一個比較重要的定理,應(yīng)用十分廣泛.迄今為止,關(guān)于勾股定理的證明方法已有400多種.其中,美國第二十任總統(tǒng)伽菲爾德的證法在數(shù)學(xué)史上被傳為佳話.
總統(tǒng)為什么會想到去證明勾股定理呢?難道他是數(shù)學(xué)家或數(shù)學(xué)愛好者?答案是否定的.事情的經(jīng)過是這樣的;
勾股的發(fā)現(xiàn)
在1876年一個周末的傍晚,在美國首都華盛頓的郊外,有一位中年人正 在散步,欣賞黃昏的美景,他就是當(dāng)時美國俄亥俄州共和黨議員伽菲爾德.他走著走著,突然發(fā)現(xiàn)附近的一個小石凳上,有兩個小孩正在聚精會地 談?wù)撝裁矗瑫r而大聲爭論,時而小聲探討.由于好奇心驅(qū)使伽菲爾德循 聲向兩個小孩走去,想搞清楚兩個小孩到底在干什么.只見一個小男孩正 俯著身子用樹枝在地上畫著一個直角三角形.于是伽菲爾德便問他們在干 什么?

只見那個小男孩頭也不抬地說:“請問先生,如果直角三角形的兩條直角邊分別為3和4,那么斜邊長為多少呢?”伽菲爾德答到:“是5呀.”小男孩又問道:“如果兩條直角邊分別為5和7,那么這個直角三角形的斜邊長又是多少?”伽菲爾德不加思索地回答到:“那斜邊的平方一定等于5的平方加上7的平方.”小男孩又說道:“先生,你能說出其中的道理嗎?”伽菲爾德一時語塞,無法解釋了,心理很不是滋味。

于是伽菲爾德不再散步,立即回家,潛心探討小男孩給他留下的難題。他經(jīng)過反復(fù)的思考與演算,終于弄清楚了其中的道理,并給出了簡潔的證明方法。
1876年4月1日,伽菲爾德在《新英格蘭教育日志》上發(fā)表了他對勾股定理的這一證法。
1881年,伽菲爾德就任美國第二十任總統(tǒng)。后來,

勾股的證明

人們?yōu)榱思o(jì)念他對勾股定理直觀、簡捷、易懂、明了的證明,就把這一證法稱為“總統(tǒng)”證法。

勾股定理同時也是數(shù)學(xué)中應(yīng)用最廣泛的定理之一。例如從勾股定理出發(fā)逐漸發(fā)展了開平方、開立方;用勾股定理求圓周率。據(jù)稱金字塔底座的四個直角就是應(yīng)用這一關(guān)系來確定的.至今在建筑工地上,還在用它來放線,進(jìn)行“歸方”,即放“成直角”的線。

正因為這樣,人們對這個定理的備加推崇便不足為奇了。1955年希臘發(fā)行了一張郵票,圖案是由三個棋盤排列而成。這張郵票是紀(jì)念二千五百年前希臘的一個學(xué)派和宗教團體 —— 畢達(dá)哥拉斯學(xué)派,它的成立以及在文化上的貢獻(xiàn)。郵票上的圖案是對勾股定理的說明。希臘郵票上所示的證明方法,最初記載在歐幾里得的《幾何原本》里。
尼加拉瓜在1971年發(fā)行了一套十枚的紀(jì)念郵票,主題是世界上“十個最重要的數(shù)學(xué)公式”,其中之一便是勾股定理。

2002年的世界數(shù)學(xué)家大會在中國北京舉行,這是21世紀(jì)數(shù)學(xué)家的第一次大聚會,這次大會的會標(biāo)就選定了驗證勾股定理的“弦圖”作為中央圖案,可以說是充分表現(xiàn)了我國古代數(shù)學(xué)的成就,也充分弘揚了我國古代的數(shù)學(xué)文化,另外,我國經(jīng)過努力終于獲得了2002年數(shù)學(xué)家大會的主辦權(quán),這也是國際數(shù)學(xué)界對我國數(shù)學(xué)發(fā)展的充分肯定。

今天,世界上幾乎沒有人不知道七巧板和七巧圖,它在國外被稱為“唐圖”(Tangram),意思是中國圖(不是唐代發(fā)明的圖)。七巧板的歷史也許應(yīng)該追溯到我國先秦的古籍《周髀算經(jīng)》,其中有正方形切割術(shù),并由之證明了勾股定理。而當(dāng)時是將大正方形切割成四個同樣的三角形和一個小正方形,即弦圖,還不是七巧板?,F(xiàn)在的七巧板是經(jīng)過一段歷史演變過程的。

勾股趣事

甚至還有人提出過這樣的建議:在地球上建造一個大型裝置,以便向可能會來訪的“天外來客”表明地球上存在有智慧的生命,最適當(dāng)?shù)难b置就是一個象征勾股定理的巨大圖形,可以設(shè)在撒哈拉大沙漠、蘇聯(lián)的西伯利亞或其他廣闊的荒原上,因為一切有知識的生物都必定知道這個非凡的定理,所以用它來做標(biāo)志最容易被外來者所識別!?
有趣的是:除了三元二次方程x2 + y2 =z2(其中x、y、z都是未知數(shù))有正整數(shù)解以外,其他的三元n次方程xn + yn =zn(n為已知正整數(shù),且n>2)都不可能有正整數(shù)解。這一定理叫做費爾馬大定理(費爾馬是17世紀(jì)法國數(shù)學(xué)家)。
關(guān)于勾股定理的小故事?無
1個回答2024-02-20 02:08
勾股的發(fā)現(xiàn)
在1876年一個周末的傍晚,在美國首都華盛頓的郊外,有一位中年人正在散步,欣賞黃昏的美景,他就是當(dāng)時美國俄亥俄州共和黨議員伽菲爾德.他走著走著,突然發(fā)現(xiàn)附近的一個小石凳上,有兩個小孩正在聚精會地談?wù)撝裁?時而大聲爭論,時而小聲探討.由于好奇心驅(qū)使伽菲爾德循 聲向兩個小孩走去,想搞清楚兩個小孩到底在干什么.只見一個小男孩正俯著身子用樹枝在地上畫著一個直角三角形.于是伽菲爾德便問他們在干 什么?
只見那個小男孩頭也不抬地說:“請問先生,如果直角三角形的兩條直角邊分別為3和4,那么斜邊長為多少呢?”伽菲爾德答到:“是5呀.”小男孩又問道:“如果兩條直角邊分別為5和7,那么這個直角三角形的斜邊長又是多少?”伽菲爾德不加思索地回答到:“那斜邊的平方一定等于5的平方加上7的平方.”小男孩又說道:“先生,你能說出其中的道理嗎?”伽菲爾德一時語塞,無法解釋了,心理很不是滋味.
于是伽菲爾德不再散步,立即回家,潛心探討小男孩給他留下的難題.他經(jīng)過反復(fù)的思考與演算,終于弄清楚了其中的道理,并給出了簡潔的證明方法.
1876年4月1日,伽菲爾德在《新英格蘭教育日志》上發(fā)表了他對勾股定理的這一證法.
1881年,伽菲爾德就任美國第二十任總統(tǒng).后來,
勾股的證明
人們?yōu)榱思o(jì)念他對勾股定理直觀、簡捷、易懂、明了的證明,就把這一證法稱為“總統(tǒng)”證法.
勾股定理同時也是數(shù)學(xué)中應(yīng)用最廣泛的定理之一.例如從勾股定理出發(fā)逐漸發(fā)展了開平方、開立方;用勾股定理求圓周率.據(jù)稱金字塔底座的四個直角就是應(yīng)用這一關(guān)系來確定的.至今在建筑工地上,還在用它來放線,進(jìn)行“歸方”,即放“成直角”的線.
正因為這樣,人們對這個定理的備加推崇便不足為奇了.1955年希臘發(fā)行了一張郵票,圖案是由三個棋盤排列而成.這張郵票是紀(jì)念二千五百年前希臘的一個學(xué)派和宗教團體 —— 畢達(dá)哥拉斯學(xué)派,它的成立以及在文化上的貢獻(xiàn).郵票上的圖案是對勾股定理的說明.希臘郵票上所示的證明方法,最初記載在歐幾里得的《幾何原本》里.
尼加拉瓜在1971年發(fā)行了一套十枚的紀(jì)念郵票,主題是世界上“十個最重要的數(shù)學(xué)公式”,其中之一便是勾股定理.
2002年的世界數(shù)學(xué)家大會在中國北京舉行,這是21世紀(jì)數(shù)學(xué)家的第一次大聚會,這次大會的會標(biāo)就選定了驗證勾股定理的“弦圖”作為中央圖案,可以說是充分表現(xiàn)了我國古代數(shù)學(xué)的成就,也充分弘揚了我國古代的數(shù)學(xué)文化,另外,我國經(jīng)過努力終于獲得了2002年數(shù)學(xué)家大會的主辦權(quán),這也是國際數(shù)學(xué)界對我國數(shù)學(xué)發(fā)展的充分肯定.
今天,世界上幾乎沒有人不知道七巧板和七巧圖,它在國外被稱為“唐圖”(Tangram),意思是中國圖(不是唐代發(fā)明的圖).七巧板的歷史也許應(yīng)該追溯到我國先秦的古籍《周髀算經(jīng)》,其中有正方形切割術(shù),并由之證明了勾股定理.而當(dāng)時是將大正方形切割成四個同樣的三角形和一個小正方形,即弦圖,還不是七巧板.現(xiàn)在的七巧板是經(jīng)過一段歷史演變過程的.
勾股趣事
甚至還有人提出過這樣的建議:在地球上建造一個大型裝置,以便向可能會來訪的“天外來客”表明地球上存在有智慧的生命,最適當(dāng)?shù)难b置就是一個象征勾股定理的巨大圖形,可以設(shè)在撒哈拉大沙漠、蘇聯(lián)的西伯利亞或其他廣闊的荒原上,因為一切有知識的生物都必定知道這個非凡的定理,所以用它來做標(biāo)志最容易被外來者所識別!
有趣的是:除了三元二次方程x2 + y2 =z2(其中x、y、z都是未知數(shù))有正整數(shù)解以外,其他的三元n次方程xn + yn =zn(n為已知正整數(shù),且n>2)都不可能有正整數(shù)解.這一定理叫做費爾馬大定理(費爾馬是17世紀(jì)法國數(shù)學(xué)家).