勾股數(shù)有哪些

2024-02-24 05:02

1個回答
勾股數(shù)又名畢氏三元數(shù) 。勾股數(shù)就是可以構成一個直角三角形三邊的一組正整數(shù)。
常見的特殊勾股數(shù):3 4 5;5 12 13; 6 8 10;8,15,17;9 12 15;7 24 25;9 40 41;10 24 26;11 60 61;12 16 20;12 35 37;13 84 85;14 48 50;15 20 25;15 36 39;15 112 113;16 30 34;16 63 65;18 24 30;18 80 82;20 21 29;20 48 52;20 99 101;21 28 35;21 72 75;22 120 122;24 32 40;24 45 51;24 70 74;25 60 65;27 36 45;28 45 53;30 40 50;30 72 78;32 60 68;33 44 55;33 56 65;35 84 91;36 48 60;36 77 85;39 52 65;39 80 89;40 42 58;40 75 85 ;40 96 104;42 56 70 ; 45 60 75 ; 48 55 73 ; 48 64 80 ; 48 90 102 ; 51 68 85 ;54 72 90 ; 56 90 106 ; 57 76 95 ; 60 63 87 ; 60 80 100 ;60 91 109 ; 63 84 105 ; 65 72 97 ; 66 88 110 ; 69 92 115 ;72 96 120 ; 75 100 125 ; 80 84 116等等。
勾股數(shù)滿足勾股定理。
勾股定理是一個基本的幾何定理,指直角三角形的兩條直角邊的平方和等于斜邊的平方。中國古代稱直角三角形為勾股形,并且直角邊中較小者為勾,另一長直角邊為股,斜邊為弦,所以稱這個定理為勾股定理,也有人稱商高定理。
勾股定理現(xiàn)約有500種證明方法,是數(shù)學定理中證明方法最多的定理之一。勾股定理是人類早期發(fā)現(xiàn)并證明的重要數(shù)學定理之一,用代數(shù)思想解決幾何問題的最重要的工具之一,也是數(shù)形結合的紐帶之一。在中國,商朝時期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并證明此定理的為公元前6世紀古希臘的畢達哥拉斯學派,他用演繹法證明了直角三角形斜邊平方等于兩直角邊平方之和。
相關問答
勾股是什么???
2個回答2022-09-12 23:39
勾和股是直角三角形的兩條直角邊。勾股定理是關于直角三角形三條邊長關系的定理,應用非常廣泛,比如,有習題 已知條件給你直角三角形兩條邊長的條件,讓你求第三條邊的值,你可以列方程求解。 勾股定理還可以再推...
全文
關于勾股定理的故事
1個回答2024-02-28 20:52
中國最早的一部數(shù)學著作——《周髀算經(jīng)》的開頭,記載著一段周公向商高請教數(shù)學知識的對話:   周公問:“我聽說您對數(shù)學非常精通,我想請教一下:天沒有梯子可以上去,地也沒法用尺子去一段一段丈量,那么怎樣才...
全文
數(shù)學中的勾股定理是怎么講
1個回答2024-02-25 03:13
勾股定理是一個基本的幾何定穗做理皮弊,直角三角形兩直角邊(即“勾”,“股”)邊長平方和猜握衡等于斜邊(即“弦”)邊長的平方。
勾股定理的故事
1個回答2024-02-13 15:06
勾股定理趣事 學過幾何的人都知道勾股定理.它是幾何中一個比較重要的定理,應用十分廣泛.迄今為止,關于勾股定理的證明方法已有400多種.其中,美國第二十任總統(tǒng)伽菲爾德的證法在數(shù)學史上被傳為...
全文
關于勾股定理的小故事?無
1個回答2024-02-20 02:08
勾股的發(fā)現(xiàn) 在1876年一個周末的傍晚,在美國首都華盛頓的郊外,有一位中年人正在散步,欣賞黃昏的美景,他就是當時美國俄亥俄州共和黨議員伽菲爾德.他走著走著,突然發(fā)現(xiàn)附近的一個小石凳上,有兩個小孩正在...
全文
關于勾股定理的小故事
1個回答2024-02-12 03:32
中國最早的一部數(shù)學著作——《周髀算經(jīng)》的開頭,記載著一段周公向商高請教數(shù)學知識的對話: 周公問:“我聽說您對數(shù)學非常精通,我想請教一下:天沒有梯子可以上去,地也沒法用尺子去一段一段丈量,那么怎...
全文
勾股定理的故事
1個回答2024-02-19 14:43
? ? ? 最早發(fā)現(xiàn)"勾三股四弦五"這一特殊關系的是古埃及人,這一事實可以追溯到公元前25世紀,中國古代數(shù)學家也較早獨立發(fā)現(xiàn)并證明過勾股定理,而對它的應用更有許多獨到之處。勾股定理一般情況的發(fā)現(xiàn)...
全文
勾股定理。。。
1個回答2024-02-22 09:41
直角三角形古語:(勾三股四弦必五) AB+BC=AC (AB某直角邊BC某直角邊AC斜邊)
勾股定理
1個回答2024-03-02 00:10
定理 ?在平面上的一個直角三角形中,兩個直角邊邊長的平方加起來等于斜邊長的平方。如果設直角三角形的兩條直角邊長度分別是a和b,斜邊長度是c,那么可以用數(shù)學語言表達: a2+b2=c2 勾股定理...
全文
誰知到有關于勾股定理的故事
1個回答2024-03-29 15:19
學過幾何的人都知道勾股定理.它是幾何中一個比較重要的定理,應用十分廣泛.迄今為止,關于勾股定理的證明方法已有400多種.其中,美國第二十任總統(tǒng)伽菲爾德的證法在數(shù)學史上被傳為佳話. 總統(tǒng)為什么會想到...
全文