初二數(shù)學(xué)勾股定理試題

有難度的八年級(jí)勾股定理試題,越多越好
1個(gè)回答2022-10-17 20:36
《新思維》上
初二數(shù)學(xué)勾股定理試題30道
2個(gè)回答2022-10-13 22:18
1、在Rt△ABC中,∠C=90°,三邊長分別為a、b、c,則下列結(jié)論中恒成立的是 ( ) A、2abc2 D、2ab≤c2
2、已知x、y為正數(shù),且│x2-4│+(y2-3)2=0,如果以x、y的長為直角邊作一個(gè)直角三角形,那么以這個(gè)直角三角形的斜邊為邊長的正方形的面積為( ) A、5 B、25 C、7 D、15
3、直角三角形的一直角邊長為12,另外兩邊之長為自然數(shù),則滿足要求的直角三角形共有( ) A、4個(gè) B、5個(gè) C、6個(gè) D、8個(gè)
4、下列命題①如果a、b、c為一組勾股數(shù),那么4a、4b、4c仍是勾股數(shù);②如果直角三角形的兩邊是3、4,那么斜邊必是5;③如果一個(gè)三角形的三邊是12、25、21,那么此三角形必是直角三角形;④一個(gè)等腰直角三角形的三邊是a、b、c,(a>b=c),那么a2∶b2∶c2=2∶1∶1。其中正確的是( )
A、①② B、①③ C、①④ D、②④
5、若△ABC的三邊a、b、c滿足a2+b2+c2+338=10a+24b+26c,則此△為( )
A、銳角三角形 B、鈍角三角形 C、直角三角形 D、不能確定
6、已知等腰三角形的腰長為10,一腰上的高為6,則以底邊為邊長的正方形的面積為( )
A、40 B、80 C、40或360 D、80或360
7、如圖,在Rt△ABC中,∠C=90°,D為AC上一點(diǎn),且DA=DB=5,又△DAB的面積為10,那么DC的長是( )
A、4 B、3 C、5 D、4.5
8、如圖,一塊直角三角形的紙片,兩直角邊AC=6㎝,BC=8㎝。現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,則CD等于( )
A、2㎝ B、3㎝ C、4㎝ D、5㎝
9.一只螞蟻從長、寬都是3,高是8的長方體紙箱的A點(diǎn)沿紙箱爬到B點(diǎn),那么它所行的最短路線的長是_____________。
10.在平靜的湖面上,有一支紅蓮,高出水面1米,陣風(fēng)吹來,紅蓮被吹到一邊,花朵齊及水面,已知紅蓮移動(dòng)的水平距離為2米,問這里水深是________m。
二.解答題
1.如圖,某沿海開放城市A接到臺(tái)風(fēng)警報(bào),在該市正南方向260km的B處有一臺(tái)風(fēng)中心,沿BC方向以15km/h的速度向D移動(dòng),已知城市A到BC的距離AD=100km,那么臺(tái)風(fēng)中心經(jīng)過多長時(shí)間從B點(diǎn)移到D點(diǎn)?如果在距臺(tái)風(fēng)中心30km的圓形區(qū)域內(nèi)都將有受到臺(tái)風(fēng)的破壞的危險(xiǎn),正在D點(diǎn)休閑的游人在接到臺(tái)風(fēng)警報(bào)后的幾小時(shí)內(nèi)撤離才可脫離危險(xiǎn)?
2、數(shù)組3、4、5;5、12、13;7、24、25;9、40、41;……都是勾股數(shù),若奇數(shù)n為直角三角形的一直角邊,用含n的代數(shù)式表示斜邊和另一直角邊。并寫出接下來的兩組勾股數(shù)。
3、一架方梯長25米,如圖,斜靠在一面墻上,梯子底端離墻7米,(1)這個(gè)梯子的頂端距地面有多高?(2)如果梯子的頂端下滑了4米,那么梯子的底端在水平方向滑動(dòng)了幾米?(3)當(dāng)梯子的頂端下滑的距離與梯子的底端水平滑動(dòng)的距離相等時(shí),這時(shí)梯子的頂端距地面有多高?
4.如圖,A、B兩個(gè)小集鎮(zhèn)在河流CD的同側(cè),分別到河的距離為AC=10千米,BD=30千米,且CD=30千米,現(xiàn)在要在河邊建一自來水廠,向A、B兩鎮(zhèn)供水,鋪設(shè)水管的費(fèi)用為每千米3萬,請(qǐng)你在河流CD上選擇水廠的位置M,使鋪設(shè)水管的費(fèi)用最節(jié)省,并求出總費(fèi)用是多少?
關(guān)于勾股定理的故事
1個(gè)回答2024-02-28 20:52
中國最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開頭,記載著一段周公向商高請(qǐng)教數(shù)學(xué)知識(shí)的對(duì)話:
  周公問:“我聽說您對(duì)數(shù)學(xué)非常精通,我想請(qǐng)教一下:天沒有梯子可以上去,地也沒法用尺子去一段一段丈量,那么怎樣才能得到關(guān)于天地得到數(shù)據(jù)呢?”
  
商高回答說:“數(shù)的產(chǎn)生來源于對(duì)方和圓這些形體的認(rèn)識(shí)。其中有一條原理:當(dāng)直角三角形‘矩’得到的一條直角邊‘勾’等于3,另一條直角邊‘股’等于4的時(shí)候,那么它的斜邊‘弦’就必定是5。這個(gè)原理是大禹在治水的時(shí)候就總結(jié)出來的呵?!?br/>  
從上面所引的這段對(duì)話中,我們可以清楚地看到,我國古代的人民早在幾千年以前就已經(jīng)發(fā)現(xiàn)并應(yīng)用勾股定理這一重要懂得數(shù)學(xué)原理了。稍懂平面幾何的讀者都知道,所謂勾股定理,就是指在直角三角形中,兩條直角邊的平方和等于斜邊的平方。
勾股數(shù)有哪些
1個(gè)回答2024-02-24 05:02
勾股數(shù)又名畢氏三元數(shù) 。勾股數(shù)就是可以構(gòu)成一個(gè)直角三角形三邊的一組正整數(shù)。
常見的特殊勾股數(shù):3 4 5;5 12 13; 6 8 10;8,15,17;9 12 15;7 24 25;9 40 41;10 24 26;11 60 61;12 16 20;12 35 37;13 84 85;14 48 50;15 20 25;15 36 39;15 112 113;16 30 34;16 63 65;18 24 30;18 80 82;20 21 29;20 48 52;20 99 101;21 28 35;21 72 75;22 120 122;24 32 40;24 45 51;24 70 74;25 60 65;27 36 45;28 45 53;30 40 50;30 72 78;32 60 68;33 44 55;33 56 65;35 84 91;36 48 60;36 77 85;39 52 65;39 80 89;40 42 58;40 75 85 ;40 96 104;42 56 70 ; 45 60 75 ; 48 55 73 ; 48 64 80 ; 48 90 102 ; 51 68 85 ;54 72 90 ; 56 90 106 ; 57 76 95 ; 60 63 87 ; 60 80 100 ;60 91 109 ; 63 84 105 ; 65 72 97 ; 66 88 110 ; 69 92 115 ;72 96 120 ; 75 100 125 ; 80 84 116等等。
勾股數(shù)滿足勾股定理。
勾股定理是一個(gè)基本的幾何定理,指直角三角形的兩條直角邊的平方和等于斜邊的平方。中國古代稱直角三角形為勾股形,并且直角邊中較小者為勾,另一長直角邊為股,斜邊為弦,所以稱這個(gè)定理為勾股定理,也有人稱商高定理。
勾股定理現(xiàn)約有500種證明方法,是數(shù)學(xué)定理中證明方法最多的定理之一。勾股定理是人類早期發(fā)現(xiàn)并證明的重要數(shù)學(xué)定理之一,用代數(shù)思想解決幾何問題的最重要的工具之一,也是數(shù)形結(jié)合的紐帶之一。在中國,商朝時(shí)期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并證明此定理的為公元前6世紀(jì)古希臘的畢達(dá)哥拉斯學(xué)派,他用演繹法證明了直角三角形斜邊平方等于兩直角邊平方之和。
數(shù)學(xué)中的勾股定理是怎么講
1個(gè)回答2024-02-25 03:13
勾股定理是一個(gè)基本的幾何定穗做理皮弊,直角三角形兩直角邊(即“勾”,“股”)邊長平方和猜握衡等于斜邊(即“弦”)邊長的平方。
勾股定理的故事
1個(gè)回答2024-02-13 15:06
勾股定理趣事
學(xué)過幾何的人都知道勾股定理.它是幾何中一個(gè)比較重要的定理,應(yīng)用十分廣泛.迄今為止,關(guān)于勾股定理的證明方法已有400多種.其中,美國第二十任總統(tǒng)伽菲爾德的證法在數(shù)學(xué)史上被傳為佳話.
總統(tǒng)為什么會(huì)想到去證明勾股定理呢?難道他是數(shù)學(xué)家或數(shù)學(xué)愛好者?答案是否定的.事情的經(jīng)過是這樣的;
勾股的發(fā)現(xiàn)
在1876年一個(gè)周末的傍晚,在美國首都華盛頓的郊外,有一位中年人正 在散步,欣賞黃昏的美景,他就是當(dāng)時(shí)美國俄亥俄州共和黨議員伽菲爾德.他走著走著,突然發(fā)現(xiàn)附近的一個(gè)小石凳上,有兩個(gè)小孩正在聚精會(huì)地 談?wù)撝裁?,時(shí)而大聲爭論,時(shí)而小聲探討.由于好奇心驅(qū)使伽菲爾德循 聲向兩個(gè)小孩走去,想搞清楚兩個(gè)小孩到底在干什么.只見一個(gè)小男孩正 俯著身子用樹枝在地上畫著一個(gè)直角三角形.于是伽菲爾德便問他們?cè)诟? 什么?

只見那個(gè)小男孩頭也不抬地說:“請(qǐng)問先生,如果直角三角形的兩條直角邊分別為3和4,那么斜邊長為多少呢?”伽菲爾德答到:“是5呀.”小男孩又問道:“如果兩條直角邊分別為5和7,那么這個(gè)直角三角形的斜邊長又是多少?”伽菲爾德不加思索地回答到:“那斜邊的平方一定等于5的平方加上7的平方.”小男孩又說道:“先生,你能說出其中的道理嗎?”伽菲爾德一時(shí)語塞,無法解釋了,心理很不是滋味。

于是伽菲爾德不再散步,立即回家,潛心探討小男孩給他留下的難題。他經(jīng)過反復(fù)的思考與演算,終于弄清楚了其中的道理,并給出了簡潔的證明方法。
1876年4月1日,伽菲爾德在《新英格蘭教育日志》上發(fā)表了他對(duì)勾股定理的這一證法。
1881年,伽菲爾德就任美國第二十任總統(tǒng)。后來,

勾股的證明

人們?yōu)榱思o(jì)念他對(duì)勾股定理直觀、簡捷、易懂、明了的證明,就把這一證法稱為“總統(tǒng)”證法。

勾股定理同時(shí)也是數(shù)學(xué)中應(yīng)用最廣泛的定理之一。例如從勾股定理出發(fā)逐漸發(fā)展了開平方、開立方;用勾股定理求圓周率。據(jù)稱金字塔底座的四個(gè)直角就是應(yīng)用這一關(guān)系來確定的.至今在建筑工地上,還在用它來放線,進(jìn)行“歸方”,即放“成直角”的線。

正因?yàn)檫@樣,人們對(duì)這個(gè)定理的備加推崇便不足為奇了。1955年希臘發(fā)行了一張郵票,圖案是由三個(gè)棋盤排列而成。這張郵票是紀(jì)念二千五百年前希臘的一個(gè)學(xué)派和宗教團(tuán)體 —— 畢達(dá)哥拉斯學(xué)派,它的成立以及在文化上的貢獻(xiàn)。郵票上的圖案是對(duì)勾股定理的說明。希臘郵票上所示的證明方法,最初記載在歐幾里得的《幾何原本》里。
尼加拉瓜在1971年發(fā)行了一套十枚的紀(jì)念郵票,主題是世界上“十個(gè)最重要的數(shù)學(xué)公式”,其中之一便是勾股定理。

2002年的世界數(shù)學(xué)家大會(huì)在中國北京舉行,這是21世紀(jì)數(shù)學(xué)家的第一次大聚會(huì),這次大會(huì)的會(huì)標(biāo)就選定了驗(yàn)證勾股定理的“弦圖”作為中央圖案,可以說是充分表現(xiàn)了我國古代數(shù)學(xué)的成就,也充分弘揚(yáng)了我國古代的數(shù)學(xué)文化,另外,我國經(jīng)過努力終于獲得了2002年數(shù)學(xué)家大會(huì)的主辦權(quán),這也是國際數(shù)學(xué)界對(duì)我國數(shù)學(xué)發(fā)展的充分肯定。

今天,世界上幾乎沒有人不知道七巧板和七巧圖,它在國外被稱為“唐圖”(Tangram),意思是中國圖(不是唐代發(fā)明的圖)。七巧板的歷史也許應(yīng)該追溯到我國先秦的古籍《周髀算經(jīng)》,其中有正方形切割術(shù),并由之證明了勾股定理。而當(dāng)時(shí)是將大正方形切割成四個(gè)同樣的三角形和一個(gè)小正方形,即弦圖,還不是七巧板?,F(xiàn)在的七巧板是經(jīng)過一段歷史演變過程的。

勾股趣事

甚至還有人提出過這樣的建議:在地球上建造一個(gè)大型裝置,以便向可能會(huì)來訪的“天外來客”表明地球上存在有智慧的生命,最適當(dāng)?shù)难b置就是一個(gè)象征勾股定理的巨大圖形,可以設(shè)在撒哈拉大沙漠、蘇聯(lián)的西伯利亞或其他廣闊的荒原上,因?yàn)橐磺杏兄R(shí)的生物都必定知道這個(gè)非凡的定理,所以用它來做標(biāo)志最容易被外來者所識(shí)別!?
有趣的是:除了三元二次方程x2 + y2 =z2(其中x、y、z都是未知數(shù))有正整數(shù)解以外,其他的三元n次方程xn + yn =zn(n為已知正整數(shù),且n>2)都不可能有正整數(shù)解。這一定理叫做費(fèi)爾馬大定理(費(fèi)爾馬是17世紀(jì)法國數(shù)學(xué)家)。
關(guān)于勾股定理的小故事?無
1個(gè)回答2024-02-20 02:08
勾股的發(fā)現(xiàn)
在1876年一個(gè)周末的傍晚,在美國首都華盛頓的郊外,有一位中年人正在散步,欣賞黃昏的美景,他就是當(dāng)時(shí)美國俄亥俄州共和黨議員伽菲爾德.他走著走著,突然發(fā)現(xiàn)附近的一個(gè)小石凳上,有兩個(gè)小孩正在聚精會(huì)地談?wù)撝裁?時(shí)而大聲爭論,時(shí)而小聲探討.由于好奇心驅(qū)使伽菲爾德循 聲向兩個(gè)小孩走去,想搞清楚兩個(gè)小孩到底在干什么.只見一個(gè)小男孩正俯著身子用樹枝在地上畫著一個(gè)直角三角形.于是伽菲爾德便問他們?cè)诟?什么?
只見那個(gè)小男孩頭也不抬地說:“請(qǐng)問先生,如果直角三角形的兩條直角邊分別為3和4,那么斜邊長為多少呢?”伽菲爾德答到:“是5呀.”小男孩又問道:“如果兩條直角邊分別為5和7,那么這個(gè)直角三角形的斜邊長又是多少?”伽菲爾德不加思索地回答到:“那斜邊的平方一定等于5的平方加上7的平方.”小男孩又說道:“先生,你能說出其中的道理嗎?”伽菲爾德一時(shí)語塞,無法解釋了,心理很不是滋味.
于是伽菲爾德不再散步,立即回家,潛心探討小男孩給他留下的難題.他經(jīng)過反復(fù)的思考與演算,終于弄清楚了其中的道理,并給出了簡潔的證明方法.
1876年4月1日,伽菲爾德在《新英格蘭教育日志》上發(fā)表了他對(duì)勾股定理的這一證法.
1881年,伽菲爾德就任美國第二十任總統(tǒng).后來,
勾股的證明
人們?yōu)榱思o(jì)念他對(duì)勾股定理直觀、簡捷、易懂、明了的證明,就把這一證法稱為“總統(tǒng)”證法.
勾股定理同時(shí)也是數(shù)學(xué)中應(yīng)用最廣泛的定理之一.例如從勾股定理出發(fā)逐漸發(fā)展了開平方、開立方;用勾股定理求圓周率.據(jù)稱金字塔底座的四個(gè)直角就是應(yīng)用這一關(guān)系來確定的.至今在建筑工地上,還在用它來放線,進(jìn)行“歸方”,即放“成直角”的線.
正因?yàn)檫@樣,人們對(duì)這個(gè)定理的備加推崇便不足為奇了.1955年希臘發(fā)行了一張郵票,圖案是由三個(gè)棋盤排列而成.這張郵票是紀(jì)念二千五百年前希臘的一個(gè)學(xué)派和宗教團(tuán)體 —— 畢達(dá)哥拉斯學(xué)派,它的成立以及在文化上的貢獻(xiàn).郵票上的圖案是對(duì)勾股定理的說明.希臘郵票上所示的證明方法,最初記載在歐幾里得的《幾何原本》里.
尼加拉瓜在1971年發(fā)行了一套十枚的紀(jì)念郵票,主題是世界上“十個(gè)最重要的數(shù)學(xué)公式”,其中之一便是勾股定理.
2002年的世界數(shù)學(xué)家大會(huì)在中國北京舉行,這是21世紀(jì)數(shù)學(xué)家的第一次大聚會(huì),這次大會(huì)的會(huì)標(biāo)就選定了驗(yàn)證勾股定理的“弦圖”作為中央圖案,可以說是充分表現(xiàn)了我國古代數(shù)學(xué)的成就,也充分弘揚(yáng)了我國古代的數(shù)學(xué)文化,另外,我國經(jīng)過努力終于獲得了2002年數(shù)學(xué)家大會(huì)的主辦權(quán),這也是國際數(shù)學(xué)界對(duì)我國數(shù)學(xué)發(fā)展的充分肯定.
今天,世界上幾乎沒有人不知道七巧板和七巧圖,它在國外被稱為“唐圖”(Tangram),意思是中國圖(不是唐代發(fā)明的圖).七巧板的歷史也許應(yīng)該追溯到我國先秦的古籍《周髀算經(jīng)》,其中有正方形切割術(shù),并由之證明了勾股定理.而當(dāng)時(shí)是將大正方形切割成四個(gè)同樣的三角形和一個(gè)小正方形,即弦圖,還不是七巧板.現(xiàn)在的七巧板是經(jīng)過一段歷史演變過程的.
勾股趣事
甚至還有人提出過這樣的建議:在地球上建造一個(gè)大型裝置,以便向可能會(huì)來訪的“天外來客”表明地球上存在有智慧的生命,最適當(dāng)?shù)难b置就是一個(gè)象征勾股定理的巨大圖形,可以設(shè)在撒哈拉大沙漠、蘇聯(lián)的西伯利亞或其他廣闊的荒原上,因?yàn)橐磺杏兄R(shí)的生物都必定知道這個(gè)非凡的定理,所以用它來做標(biāo)志最容易被外來者所識(shí)別!
有趣的是:除了三元二次方程x2 + y2 =z2(其中x、y、z都是未知數(shù))有正整數(shù)解以外,其他的三元n次方程xn + yn =zn(n為已知正整數(shù),且n>2)都不可能有正整數(shù)解.這一定理叫做費(fèi)爾馬大定理(費(fèi)爾馬是17世紀(jì)法國數(shù)學(xué)家).
關(guān)于勾股定理的小故事
1個(gè)回答2024-02-12 03:32
中國最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開頭,記載著一段周公向商高請(qǐng)教數(shù)學(xué)知識(shí)的對(duì)話:
周公問:“我聽說您對(duì)數(shù)學(xué)非常精通,我想請(qǐng)教一下:天沒有梯子可以上去,地也沒法用尺子去一段一段丈量,那么怎樣才能得到關(guān)于天地得到數(shù)據(jù)呢?”
商高回答說:“數(shù)的產(chǎn)生來源于對(duì)方和圓這些形體餓認(rèn)識(shí)。其中有一條原理:當(dāng)直角三角形‘矩’得到的一條直角邊‘勾’等于3,另一條直角邊‘股’等于4的時(shí)候,那么它的斜邊‘弦’就必定是5。這個(gè)原理是大禹在治水的時(shí)候就總結(jié)出來的呵?!?br/> 從上面所引的這段對(duì)話中,我們可以清楚地看到,我國古代的人民早在幾千年以前就已經(jīng)發(fā)現(xiàn)并應(yīng)用勾股定理這一重要懂得數(shù)學(xué)原理了。稍懂平面幾何餓讀者都知道,所謂勾股定理,就是指在直角三角形中,兩條直角邊的平方和等于斜邊的平方。如圖所示,我們

圖1 直角三角形

用勾(a)和股(b)分別表示直角三角形得到兩條直角邊,用弦(c)來表示斜邊,則可得:

勾2+股2=弦2

亦即:

a2+b2=c2

勾股定理在西方被稱為畢達(dá)哥拉斯定理,相傳是古希臘數(shù)學(xué)家兼哲學(xué)家畢達(dá)哥拉斯于公元前550年首先發(fā)現(xiàn)的。其實(shí),我國古代得到人民對(duì)這一數(shù)學(xué)定理的發(fā)現(xiàn)和應(yīng)用,遠(yuǎn)比畢達(dá)哥拉斯早得多。如果說大禹治水因年代久遠(yuǎn)而無法確切考證的話,那么周公與商高的對(duì)話則可以確定在公元前1100年左右的西周時(shí)期,比畢達(dá)哥拉斯要早了五百多年。其中所說的勾3股4弦5,正是勾股定理的一個(gè)應(yīng)用特例(32+42=52)。所以現(xiàn)在數(shù)學(xué)界把它稱為勾股定理,應(yīng)該是非常恰當(dāng)?shù)摹?br/> 在稍后一點(diǎn)的《九章算術(shù)一書》中,勾股定理得到了更加規(guī)范的一般性表達(dá)。書中的《勾股章》說;“把勾和股分別自乘,然后把它們的積加起來,再進(jìn)行開方,便可以得到弦?!卑堰@段話列成算式,即為:

弦=(勾2+股2)(1/2)

亦即:

c=(a2+b2)(1/2)

中國古代的數(shù)學(xué)家們不僅很早就發(fā)現(xiàn)并應(yīng)用勾股定理,而且很早就嘗試對(duì)勾股定理作理論的證明。最早對(duì)勾股定理進(jìn)行證明的,是三國時(shí)期吳國的數(shù)學(xué)家趙爽。趙爽創(chuàng)制了一幅“勾股圓方圖”,用形數(shù)結(jié)合得到方法,給出了勾股定理的詳細(xì)證明。在這幅“勾股圓方圖”中,以弦為邊長得到正方形ABDE是由4個(gè)相等的直角三角形再加上中間的那個(gè)小正方形組成的。每個(gè)直角三角形的面積為ab/2;中間懂得小正方形邊長為b-a,則面積為(b-a)2。于是便可得如下的式子:

4×(ab/2)+(b-a)2=c2

化簡后便可得:

a2+b2=c2

亦即:

c=(a2+b2)(1/2)

圖2 勾股圓方圖
勾股定理的故事
1個(gè)回答2024-02-19 14:43
? ? ? 最早發(fā)現(xiàn)"勾三股四弦五"這一特殊關(guān)系的是古埃及人,這一事實(shí)可以追溯到公元前25世紀(jì),中國古代數(shù)學(xué)家也較早獨(dú)立發(fā)現(xiàn)并證明過勾股定理,而對(duì)它的應(yīng)用更有許多獨(dú)到之處。勾股定理一般情況的發(fā)現(xiàn)和證明,那要?dú)w功于古希臘的畢達(dá)哥拉斯。這個(gè)定理在中國又稱為"商高定理",在外國稱為"畢達(dá)哥拉斯定理"。

? ? 美國哥倫比亞大學(xué)圖書館內(nèi)收藏著一塊編消肆號(hào)為“普林頓322”的古巴比倫泥板,上面就記載了很多勾股數(shù)。古埃及人在建筑宏偉的金字塔和測量尼羅河泛濫后的土地時(shí),也應(yīng)用過勾股定理。

? ? ? 公元前十一世紀(jì),我國周朝數(shù)學(xué)家商高就提出“勾三、股四、弦五”。勾股定理是一個(gè)基本的幾何定理,指直角三角形的兩條直角邊的平方和等于斜邊的平方。中國古代稱直角三角形為勾股形,并且直角邊中較小者為勾,另一長直角邊為股,斜邊為弦,所以稱這個(gè)定理為“勾股定理”,也有人稱“商高定理”。

? ? ? 在西方,最早提出并證明此定理的為公元前6世紀(jì)古希臘的畢達(dá)哥拉斯學(xué)派,他用演繹法證明了直角三角形斜邊平方等于兩直角邊平方之和。因而西方人都習(xí)慣地稱這個(gè)定理為“畢達(dá)哥拉斯定理”。

? ? ? 勾股定理是一個(gè)基本的幾何定理,指直角三角形的兩條直角邊的平方和等于斜邊的平方。中國古代稱直角三角形為勾股形,并且直角邊中較小者為勾,另一長直角邊為兆橋簡股,斜邊為弦,所以稱這個(gè)定理為勾股定理,也有人稱商高定理。

勾股定理現(xiàn)約有500種證明方法,是數(shù)學(xué)定理中證明方法最多的定理之一。勾股定理是人類早期發(fā)現(xiàn)并證明的重要數(shù)學(xué)定理之一,用代數(shù)思想解決幾何問題的最重要的工具之一,也是數(shù)形結(jié)合的紐帶之一。在中國,商朝時(shí)期的商高提出了“勾三股四玄五”的勾股定理的特族褲例。在西方,最早提出并證明此定理的為公元前6世紀(jì)古希臘的畢達(dá)哥拉斯學(xué)派,他用演繹法證明了直角三角形斜邊平方等于兩直角邊平方之和。
熱門問答