說話方式與技巧

物理公式怎樣巧記??
1個回答2024-02-07 05:26
不需要巧記,你越想方設(shè)法去討巧它偏不讓你記住,最好的辦法是多做多練,自然會記住,熟能生巧。
心靈手巧形式的成語
1個回答2024-02-07 05:53
是像心靈手巧式的詞語:
眉飛色舞、喜笑顏開、欣喜若狂、呆若木雞、喜出望外、垂頭喪氣、張燈結(jié)彩、歡聲笑語、失魂落魄、出類拔萃、談笑風聲、見多識廣、博學(xué)多才、高談闊論、遠見卓識
如何巧做因式分解?
1個回答2024-09-06 04:04
因式分解的一般步驟是:一提二套三分解 一提:即提公因式,看到因式分解的題目,首先看有沒有公因式,若有,則 先提公因式;若沒有,則套用公式. 二套:即套用公式,在沒有公因式的前提下,則套用公式, 常用公式有:a^2-b^2=(a+b)(a-b) a^2+2ab+b^2=(a+b)^2 a^2-2ab+b^2=(a-b)^2 十字相乘法:x^2+(a+b)x+ab=(x+a)(x+b) 舉例: x^2+5x+6=(x+3)(x+2) 三分解:即分組分解法.對于四項或四項以上的,一般都采用這種方法 下面主要對分組分解法和其他常見的方法歸納如下.   一、分組分解因式的幾種常用方法.   1.按公因式分解   例1 分解因式7x2-3y+xy+21x.   分析:第1、4項含公因式7x,第2、3項含公因式y(tǒng),分組后又有公因式(x-3),   解:原式=(7x2-21x)+(xy-3y)=7x(x-3)+y(x-3)=(x-3)(7x+y).   2.按系數(shù)分解   例2 分解因式x3+3x2+3x+9.   分析:第1、2項和3、4項的系數(shù)之比1:3,把它們按系數(shù)分組.   解;原式=(x3+3x2)+(3x+9)=x2(x+3)+3(x+3)=(x+3)(x2+3).   3.按次數(shù)分組   例3 分解因式 m2+2m·n-3m-3n+n2.   分析:第1、2、5項是二次項,第3、4項是一次項,按次數(shù)分組后能用公式和提取公因式.   解:原式=(m2+2m·n+n2)+(-3m-3n)=(m+n)2-3(m+n)=(m+n)(m+n-3).   4.按乘法公式分組   分析:第1、3、4項結(jié)合正好是完全平方公式,分組后又與第二項用平方差公式.   5.展開后再分組   例5 分解因式ab(c2+d2)+cd(a2+b2).   分析:將括號展開后再重新分組.   解:原式=abc2+abd2+cda2十cdb2=(abc2+cda2)+(cdb2+abd2)=ac(bc+ad)+bd(bc+ad)=(bc+ad)(ac+bd).   6.拆項后再分組   例6 分解因式x2-y2+4x+2y+3.   分析:把常數(shù)拆開后再分組用乘法公式.   解:原式=x2-y2+4x+2y+4-1=(x2+4x+4)+(-y2+2y-1)=(x+2)2-(y-1)2=(x+y+1)(x-y+3).   7.添項后再分組   例7 分解因式x4+4.   分析:上式項數(shù)較少,較難分解,可添項后再分組.   解:原式=x4+4x2-4x2+4=(x2+2)2-(2x)2=(x2+2x+2)(x2-2x+2)   二、用換元法進行因式分解   用添加輔助元素的換元思想進行因式分解就是原式繁雜直接分解有困難,通過換元化為簡單,從而分步完成.   例8 分解因式(x2+3x-2)(x2+3x+4)-16.   分析:將令y=x2+3x,則原式轉(zhuǎn)化為(y-2)(y+4)-16再分解就簡單了.   解:令y=x2+3x,則   原式=(y-2)(y+4)-16=y2+2y-24=(y+6)(y-4).   因此,原式=(x2+3x+6)(x2+3x-4)=(x-1)(x+4)(x2+3x+6).   三、用求根法進行因式分解   例9 分解因式x2+7x+2.   分析:x2+7x+2利用上述各方法皆不好完成,但仍可以分解,可用先求該多項式對應(yīng)方程的根再分解.      四、用待定系數(shù)法分解因式.   例10 分解因式x2+6x-16.   分析:假設(shè)能分解,則應(yīng)分解為兩個一次項式的積形式,即(x+b1)(x+b2),將其展開得   x2+(b1+b2)x十b1·b2與x2+6x-16相比較得   b1+b2=6,b1·b2=-16,可得b1,b2即可分解.   解:設(shè)x2+6x-16=(x+b1)(x+b2)   則x2+6x-16=x2+(b1+b2)x+b1·b2   ∴x2+6x-16=(x-2)(x+8).
物理記公式有什么技巧?
1個回答2024-02-11 05:53
初中高中的物理公式都很簡單的吧,就幾個最基本最基礎(chǔ)的記住就行(比如F=ma這種)。其他的公式都是根據(jù)這些基本公式推導(dǎo)出來的,你自己要是都會推導(dǎo),理解上就深,然后做幾道題目這些公式就深入人心了
因式分解法技巧
1個回答2025-01-18 14:35
因式分解沒有普遍的方法,初中數(shù)學(xué)教材中主要介紹了提公因式法、公式法。而在競賽上,又有拆項和添減項法,分組分解法和十字相乘法,待定系數(shù)法,雙十字相乘法,對稱多項式輪換對稱多項式法,余式定理法,求根公式法,換元法,長除法,短除法,除法等。(實際上就是把見到的問題復(fù)雜化)
注意三原則
1 分解要徹底
2 最后結(jié)果只有小括號
3 最后結(jié)果中多項式首項系數(shù)為正(例如:-3x2+x=x(-3x+1))
歸納方法:滬科版七下課本上有的
1、提公因式法。 2、公式法。 3、分組分解法。 4、湊數(shù)法?!緓2+(a+b)x+ab=(x+a)(x+b)】 5、組合分解法。 8、十字相乘法。 9、雙十字相乘法。 10、配方法。 11、拆項法。 12、換元法。 13、長除法。 14、加減項法。 15、求根法。 16、圖象法。 17、主元法。 18、待定系數(shù)法。 19、特殊值法。 20、因式定理法。

基本方法
⑴提公因式法
各項都含有的公共的因式叫做這個多項式各項的公因式。
如果一個多項式的各項有公因式,可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式,這種分解因式的方法叫做提公因式法。
具體方法:當各項系數(shù)都是整數(shù)時,公因式的系數(shù)應(yīng)取各項系數(shù)的最大公約數(shù);字母取各項的相同的字母,而且各字母的指數(shù)取次數(shù)最低的;取相同的多項式,多項式的次數(shù)取最低的。
如果多項式的第一項是負的,一般要提出“-”號,使括號內(nèi)的第一項的系數(shù)成為正數(shù)。提出“-”號時,多項式的各項都要變號。
口訣:找準公因式,一次要提凈;全家都搬走,留1把家守;提負要變號,變形看奇偶。
例如:-am+bm+cm=-m(a-b-c);
a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。
注意:把2a+1/2變成2(a+1/4)不叫提公因式

⑵公式法
如果把乘法公式反過來,就可以把某些多項式分解因式,這種方法叫公式法。
平方差公式:a^2-b^2=(a+b)(a-b);
完全平方公式:a^2±2ab+b^2=(a±b)^2;
注意:能運用完全平方公式分解因式的多項式必須是三項式,其中有兩項能寫成兩個數(shù)(或式)的平方和的形式,另一項是這兩個數(shù)(或式)的積的2倍。
兩根式:ax^2+bx+c=a(x-(-b+√(b^2-4ac))/2a)(x-(-b-√(b^2-4ac))/2a)
立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2);
立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2);
完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.
公式:a+b+c-3abc=(a+b+c)(a+b+c-ab-bc-ca)
例如:a ^2+4ab+4b^2 =(a+2b)^2。
(3)分解因式技巧
1.分解因式與整式乘法是互為逆變形。
2.分解因式技巧掌握:
①等式左邊必須是多項式;
②分解因式的結(jié)果必須是以乘積的形式表示;
③每個因式必須是整式,且每個因式的次數(shù)都必須低于原來多項式的次數(shù);
④分解因式必須分解到每個多項式因式都不能再分解為止。
注:分解因式前先要找到公因式,在確定公因式前,應(yīng)從系數(shù)和因式兩個方面考慮。

3.提公因式法基本步驟:
(1)找出公因式;
(2)提公因式并確定另一個因式:
①第一步找公因式可按照確定公因式的方法先確定系數(shù)在確定字母;
②第二步提公因式并確定另一個因式,注意要確定另一個因式,可用原多項式除以公因式,所得的商即是提公因式后剩下的一個因式,也可用公因式分別除去原多項式的每一項,求的剩下的另一個因式;
③提完公因式后,另一因式的項數(shù)與原多項式的項數(shù)相同。

⑶分組分解法
分組分解是解方程的一種簡潔的方法,我們來學(xué)習這個知識。
能分組分解的方程有四項或大于四項,一般的分組分解有兩種形式:二二分法,三一分法。
比如: ax+ay+bx+by =a(x+y)+b(x+y)=(a+b)(x+y)
我們把ax和ay分一組,bx和by分一組,利用乘法分配律,兩兩相配,立即解除了困難。
同樣,這道題也可以這樣做。
ax+ay+bx+by =x(a+b)+y(a+b) =(a+b)(x+y)
幾道例題:
1. 5ax+5bx+3ay+3by 解法:=5x(a+b)+3y(a+b)=(5x+3y)(a+b)
說明:系數(shù)不一樣一樣可以做分組分解,和上面一樣,把5ax和5bx看成整體,把3ay和3by看成一個整體,利用乘法分配律輕松解出。
2. x^3-x^2+x-1
解法:=(x^3-x^2)+(x-1)=x^2(x-1)+ (x-1)=(x-1)(x^2+1)
利用二二分法,提公因式法提出x2,然后相合輕松解決。
3. x2-x-y2-y 解法:=(x2-y2)-(x+y)=(x+y)(x-y)-(x+y)=(x+y)(x-y-1)
利用二二分法,再利用公式法a2-b2=(a+b)(a-b),然后相合解決。

⑷十字相乘法
這種方法有兩種情況。
①x^2+(p+q)x+pq型的式子的因式分解
這類二次三項式的特點是:二次項的系數(shù)是1;常數(shù)項是兩個數(shù)的積;一次項系數(shù)是常數(shù)項的兩個因數(shù)的和。因此,可以直接將某些二次項的系數(shù)是1的二次三項式因式分解:x^2+(p+q)x+pq=(x+p)(x+q) .
②kx^2+mx+n型的式子的因式分解
如果有k=ac,n=bd,且有ad+bc=m時,那么kx^2+mx+n=(ax+b)(cx+d).
圖示如下: a b
c × d
例如:因為 1 -3
7 × 2
-3×7=-21,1×2=2,且2-21=-19,
所以7x^2-19x-6=(7x+2)(x-3).
十字相乘法口訣:首尾分解,交叉相乘,求和湊中

⑸拆項、添項法
這種方法指把多項式的某一項拆開或填補上互為相反數(shù)的兩項(或幾項),使原式適合于提公因式法、運用公式法或分組分解法進行分解。要注意,必須在與原多項式相等的原則下進行變形。
例如:bc(b+c)+ca(c-a)-ab(a+b)
=bc(c-a+a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+bc(a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)
=(bc+ca)(c-a)+(bc-ab)(a+b)
=c(c-a)(b+a)+b(a+b)(c-a)
=(c+b)(c-a)(a+b).

⑹配方法
對于某些不能利用公式法的多項式,可以將其配成一個完全平方式,然后再利用平方差公式,就能將其因式分解,這種方法叫配方法。屬于拆項、補項法的一種特殊情況。也要注意必須在與原多項式相等的原則下進行變形。
例如:x^2+3x-40=x^2+3x+2.25-42.25=(x+1.5)^2-(6.5)^2=(x+8)(x-5).

⑺應(yīng)用因式定理
對于多項式f(x)=0,如果f(a)=0,那么f(x)必含有因式x-a.
例如:f(x)=x^2+5x+6,f(-2)=0,則可確定x+2是x^2+5x+6的一個因式。(事實上,x^2+5x+6=(x+2)(x+3).)
注意:1、對于系數(shù)全部是整數(shù)的多項式,若X=q/p(p,q為互質(zhì)整數(shù)時)該多項式值為零,則q為常數(shù)項約數(shù),p最高次項系數(shù)約數(shù);
2、對于多項式f(a)=0,b為最高次項系數(shù),c為常數(shù)項,則有a為c/b約數(shù)

⑻換元法
有時在分解因式時,可以選擇多項式中的相同的部分換成另一個未知數(shù),然后進行因式分解,最后再轉(zhuǎn)換回來,這種方法叫做換元法。注意:換元后勿忘還元.
例如在分解(x^2+x+1)(x^2+x+2)-12時,可以令y=x^2+x,則
原式=(y+1)(y+2)-12
=y^2+3y+2-12=y^2+3y-10
=(y+5)(y-2)
=(x^2+x+5)(x^2+x-2)
=(x^2+x+5)(x+2)(x-1).

⑼求根法
令多項式f(x)=0,求出其根為x1,x2,x3,……xn,則該多項式可分解為f(x)=(x-x1)(x-x2)(x-x3)……(x-xn) .
例如在分解2x^4+7x^3-2x^2-13x+6時,令2x^4 +7x^3-2x^2-13x+6=0,
則通過綜合除法可知,該方程的根為0.5 ,-3,-2,1.
所以2x^4+7x^3-2x^2-13x+6=(2x-1)(x+3)(x+2)(x-1).

⑽圖象法
令y=f(x),做出函數(shù)y=f(x)的圖象,找到函數(shù)圖像與X軸的交點x1 ,x2 ,x3 ,……xn ,則多項式可因式分解為f(x)= f(x)=(x-x1)(x-x2)(x-x3)……(x-xn).
與方法⑼相比,能避開解方程的繁瑣,但是不夠準確。
例如在分解x^3 +2x^2-5x-6時,可以令y=x^3; +2x^2 -5x-6.
作出其圖像,與x軸交點為-3,-1,2
則x^3+2x^2-5x-6=(x+1)(x+3)(x-2).

⑾主元法
先選定一個字母為主元,然后把各項按這個字母次數(shù)從高到低排列,再進行因式分解。

⑿特殊值法
將2或10代入x,求出數(shù)p,將數(shù)p分解質(zhì)因數(shù),將質(zhì)因數(shù)適當?shù)慕M合,并將組合后的每一個因數(shù)寫成2或10的和與差的形式,將2或10還原成x,即得因式分解式。
例如在分解x^3+9x^2+23x+15時,令x=2,
則 x^3 +9x^2+23x+15=8+36+46+15=105,
將105分解成3個質(zhì)因數(shù)的積,即105=3×5×7 .
注意到多項式中最高項的系數(shù)為1,而3、5、7分別為x+1,x+3,x+5,在x=2時的值,
則x^3+9x^2+23x+15可能等于(x+1)(x+3)(x+5),驗證后的確如此。

⒀待定系數(shù)法
首先判斷出分解因式的形式,然后設(shè)出相應(yīng)整式的字母系數(shù),求出字母系數(shù),從而把多項式因式分解。
例如在分解x^4-x^3-5x^2-6x-4時,由分析可知:這個多項式?jīng)]有一次因式,因而只能分解為兩個二次因式。
于是設(shè)x^4-x^3-5x^2-6x-4=(x^2+ax+b)(x^2+cx+d)=x^4+(a+c)x^3+(ac+b+d)x^2+(ad+bc)x+bd
由此可得a+c=-1, ac+b+d=-5, ad+bc=-6, bd=-4.
解得a=1,b=1,c=-2,d=-4.
則x^4-x^3-5x^2-6x-4=(x^2+x+1)(x^2-2x-4).

⒁雙十字相乘法
雙十字相乘法屬于因式分解的一類,類似于十字相乘法。
雙十字相乘法就是二元二次六項式,啟始的式子如下: ax^2+bxy+cy^2+dx+ey+f
x、y為未知數(shù),其余都是常數(shù)
用一道例題來說明如何使用。
例:分解因式:x^2+5xy+6y^2+8x+18y+12.
分析:這是一個二次六項式,可考慮使用雙十字相乘法進行因式分解。 解:圖如下,把所有的數(shù)字交叉相連即可
x 2y 2 ① ② ③ x 3y 6
∴原式=(x+2y+2)(x+3y+6).
雙十字相乘法其步驟為:
①先用十字相乘法分解2次項,如十字相乘圖①中x^2+5xy+6y^2=(x+2y)(x+3y);
②先依一個字母(如y)的一次系數(shù)分數(shù)常數(shù)項。如十字相乘圖②中6y2+18y+12=(2y+2)(3y+6);
③再按另一個字母(如x)的一次系數(shù)進行檢驗,如十字相乘圖③,這一步不能省,否則容易出錯。

(15)利用根與系數(shù)的關(guān)系對二次多項式進行因式分解
例:對于二次多項式 aX^2+bX+c(a≠0)
aX^2+bX+c=a[X^2+(b/a)X+(c/a)X].
當△=b^2-4ac≥0時, =a(X^2-X1-X2+X1X2) =a(X-X1)(X-X2).

多項式因式分解的一般步驟:
①如果多項式的各項有公因式,那么先提公因式;
②如果各項沒有公因式,那么可嘗試運用公式、十字相乘法來分解;
③如果用上述方法不能分解,那么可以嘗試用分組、拆項、補項法來分解;
④分解因式,必須進行到每一個多項式因式都不能再分解為止。
也可以用一句話來概括:“先看有無公因式,再看能否套公式。十字相乘試一試,分組分解要合適?!?
幾道例題
1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2.
解:原式=(1+y)^2+2(1+y)x^2(1-y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(補項)
=[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(完全平方)
=[(1+y)+x^2(1-y)]^2-(2x)^2 =[(1+y)+x^2(1-y)+2x][(1+y)+x^2(1-y)-2x]
=(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1)
=[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)]
=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y).
2.求證:對于任何實數(shù)x,y,下式的值都不會為33:
x^5+3x^4y-5x^3y^2-15x^2y^3+4xy^4+12y^5.
解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5)
=x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y)
=(x+3y)(x^4-5x^2y^2+4y^4)
=(x+3y)(x^2-4y^2)(x^2-y^2)
=(x+3y)(x+y)(x-y)(x+2y)(x-2y).
(分解因式的過程也可以參看右圖。)
當y=0時,原式=x^5不等于33;當y不等于0時,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四個以上不同因數(shù)的積,所以原命題成立。
3..△ABC的三邊a、b、c有如下關(guān)系式:-c^2+a^2+2ab-2bc=0,求證:這個三角形是等腰三角形。
分析:此題實質(zhì)上是對關(guān)系式的等號左邊的多項式進行因式分解。
證明:∵-c^2+a^2+2ab-2bc=0,
∴(a+c)(a-c)+2b(a-c)=0. ∴(a-c)(a+2b+c)=0.
∵a、b、c是△ABC的三條邊, ∴a+2b+c>0. ∴a-c=0,
即a=c,△ABC為等腰三角形。

4.把-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1)分解因式。
解:-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1)
=-6x^n×y^(n-1)(2x^n×y-3x^2y^2+1).

因式分解四個注意:
因式分解中的四個注意,可用四句話概括如下:首項有負常提負,各項有“公”先提“公”,某項提出莫漏1,括號里面分到“底”。 現(xiàn)舉下例 可供參考
例1 把-a2-b2+2ab+4分解因式。
解:-a2-b2+2ab+4=-(a2-2ab+b2-4)=-(a-b+2)(a-b-2) 這里的“負”,指“負號”。如果多項式的第一項是負的,一般要提出負號,使括號內(nèi)第一項系數(shù)是正的。防止學(xué)生出現(xiàn)諸如-9x2+4y2=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的錯誤

例2把-12x2nyn+18xn+2yn+1-6xnyn-1分解因式。解:-12x2nyn+18xn+2yn+1-6xnyn-1=-6xnyn-1(2xny-3x2y2+1)
這里的“公”指“公因式”。如果多項式的各項含有公因式,那么先提取這個公因式,再進一步分解因式;這里的“1”,是指多項式的某個整項是公因式時,先提出這個公因式后,括號內(nèi)切勿漏掉1。

分解因式,必須進行到每一個多項式因式都不能再分解為止。即分解到底,不能半途而廢的意思。其中包含提公因式要一次性提“干凈”,不留“尾巴”,并使每一個括號內(nèi)的多項式都不能再分解。防止學(xué)生出現(xiàn)諸如4x4y2-5x2y2-9y2=y(tǒng)2(4x4-5x2-9)=y(tǒng)2(x2+1)(4x2-9)的錯誤。

考試時應(yīng)注意:
在沒有說明化到實數(shù)時,一般只化到有理數(shù)就夠了,有說明實數(shù)的話,一般就要化到整數(shù)!
由此看來,因式分解中的四個注意貫穿于因式分解的四種基本方法之中,與因式分解的四個步驟或說一般思考順序的四句話:“先看有無公因式,再看能否套公式,十字相乘試一試,分組分解要合適”等是一脈相承的。
親嘴花式 都有什么 技巧
1個回答2023-10-12 18:20
你想怎樣親就怎樣親。
復(fù)合式聽寫技巧
1個回答2024-02-11 03:48
如果其他聽力沒有問題,而復(fù)合式聽寫老是得分率低的話,多半是太緊張了,不要因為需要寫句子而緊張,而是充分利用這3次敘述,一般來說:
第一遍敘述的時候,一定要聽仔細,千萬千萬別寫下聽到的詞(寫詞會打斷理解的思路,影響整篇理解,這往往是失敗的開端);
第二遍敘述,在第一遍聽寫的基礎(chǔ)上,以邊聽邊寫為主,一般單詞大部分能寫出來,寫不出的先留著,留到第三遍再推敲,(這部分的關(guān)鍵是句子聽寫,句子是不需要寫出原文的,所以在理解的基礎(chǔ)上,簡化并以自己的語言敘述,可以先把自己聽到的句中一些詞寫下,在進行組合,如果還是沒完成,就等著第三遍查漏補缺)
第三遍,邊聽邊核對自己答出的內(nèi)容,對于句子可以再組織下語言,句子部分只要不放棄,寫出一些得分點,都是不錯的。
最后,消除遇到填空部分就緊張的最好方式,就是多聽!
紀實文學(xué)寫作方法與模式、技巧
1個回答2022-05-09 06:55
問得還挺真誠的!
小說表達技巧和表達方式有什么不同
1個回答2023-05-30 19:33
嗯,有噠,,點主頁吶
求掃雷的技巧方法和公式
1個回答2022-12-27 06:42
掃雷非常簡單
熱門問答