初二數(shù)學(xué)函數(shù)知識點總結(jié)
1、勾股定理:直角三角形兩直角邊a、b的平方和等于斜邊c的平方。
2、在Rt△ABC中,∠C為直角,則∠A的銳角三角函數(shù)為(∠A可換成∠B)
3、任意銳角的正弦值等于它的余角的余弦值;任意銳角的余弦值等于它的余角的正弦值。
4、任意銳角的正切值等于它的余角的余切值;任意銳角的余切值等于它的余角的正切值。
5、正弦、余弦的增減性:當(dāng)0°≤α≤90°時,sinα隨α的增大而增大,cosα隨α的增大而減小。
6、正切、余切的增減性: 當(dāng)0°<α<90°時,tanα隨α的增大而增大,cotα隨α的增大而減小。
7、初中三角函數(shù)兩角和與差的三角函數(shù):
cos(αβ)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβsinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(αβ)=(tanαtanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1tanα·tanβ)
8、初中三角函數(shù)倍角公式:
sin(2α)=2sinα·cosα
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
9、初中三角函數(shù)三倍角公式:
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
10、初中三角函數(shù)半角公式:
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1cosα)/2
tan^2(α/2)=(1-cosα)/(1cosα)
tan(α/2)=sinα/(1cosα)=(1-cosα)/sinα
11、初中三角函數(shù)萬能公式:
sinα=2tan(α/2)/[1tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
12、初中三角函數(shù)積化和差公式:
sinα·cosβ=(1/2)[sin(αβ)sin(α-β)]
cosα·sinβ=(1/2)[sin(αβ)-sin(α-β)]
cosα·cosβ=(1/2)[cos(αβ)cos(α-β)]
sinα·sinβ=-(1/2)[cos(αβ)-cos(α-β)]
13、初中三角函數(shù)和差化積公式:
sinαsinβ=2sin[(αβ)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(αβ)/2]sin[(α-β)/2]
cosαcosβ=2cos[(αβ)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(αβ)/2]sin[(α-β)/2]
△=(2b)2-4(m+a)(m-a)=4b2-4m2+4a2=0
a2+b2=m2
△ABM是直角三角形
又因為A、B是函數(shù)與X軸交點,因此關(guān)于對稱軸對稱
而M在對稱軸上,因此AM=BM。即a=b
三角形為等腰直角三角形
M(-2,-1),M到X軸距離為1。三角形斜邊上的中線為1
因此AB=2。所以A(-3,0)、B(-1,0)
利用交點式,設(shè)二次函數(shù)表達式為y=a(x+3)(x+1)
代入M坐標(biāo),-a=-1,a=1.表達式為y=(x+3)(x+1)=x2+4x+3
(2)設(shè)直線CD為:y=n
則圓心到X軸距離為|n|
C、D兩點到圓心距離也為|n|
因為C、D關(guān)于對稱軸X=-2對稱,因此圓心一定在X=-2上,圓心坐標(biāo)(-2,n)
所以C(-2+n,n) D(-2-n,n)
代入二次函數(shù)表達式
(-2+n)2+4(-2+n)+3=n
n2-n-1=0
n1=(1+√5)/2,n2=(1-√5)/2
圓心坐標(biāo)(-2,(1+√5)/2)或(-2,(1-√5)/2)
在某變化過程中可以取不同數(shù)值的量,叫做變量.在某變化過程中保持同一數(shù)值的量或數(shù),叫常量或常數(shù).
2.函數(shù)
設(shè)在一個變化過程中有兩個變量x與y,如果對于x在某一范圍的每一個值,y都有唯一的值與它對應(yīng),那么就說x是自變量,y是x的函數(shù).
3.自變量的取值范圍
(1)整式:自變量取一切實數(shù).
(2)分式:分母不為零.
(3)偶次方根:被開方數(shù)為非負數(shù).
(4)零指數(shù)與負整數(shù)指數(shù)冪:底數(shù)不為零.
4.函數(shù)值
對于自變量在取值范圍內(nèi)的一個確定的值,如當(dāng)x=a時,函數(shù)有唯一確定的對應(yīng)值,這個對應(yīng)值,叫做x=a時的函數(shù)值.
5.函數(shù)的表示法
(1)解析法;(2)列表法;(3)圖象法.
6.函數(shù)的圖象
把自變量x的一個值和函數(shù)y的對應(yīng)值分別作為點的橫坐標(biāo)和縱坐標(biāo),可以在平面直角坐標(biāo)系內(nèi)描出一個點,所有這些點的集合,叫做這個函數(shù)的圖象.
由函數(shù)解析式畫函數(shù)圖象的步驟:
(1)寫出函數(shù)解析式及自變量的取值范圍;
(2)列表:列表給出自變量與函數(shù)的一些對應(yīng)值;
(3)描點:以表中對應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點;
(4)連線:用平滑曲線,按照自變量由小到大的順序,把所描各點連接起來.
7.一次函數(shù)
(1)一次函數(shù)
如果y=kx+b(k、b是常數(shù),k≠0),那么y叫做x的一次函數(shù).
特別地,當(dāng)b=0時,一次函數(shù)y=kx+b成為y=kx(k是常數(shù),k≠0),這時,y叫做x的正比例函數(shù).
(2)一次函數(shù)的圖象
一次函數(shù)y=kx+b的圖象是一條經(jīng)過(0,b)點和 點的直線.
特別地,正比例函數(shù)圖象是一條經(jīng)過原點的直線.
需要說明的是,在平面直角坐標(biāo)系中,“直線”并不等價于“一次函數(shù)y=kx+b(k≠0)的圖象”,因為還有直線y=m(此時k=0)和直線x=n(此時k不存在),它們不是一次函數(shù)圖象.
(3)一次函數(shù)的性質(zhì)
當(dāng)k>0時,y隨x的增大而增大;當(dāng)k<0時,y隨x的增大而減小.
直線y=kx+b與y軸的交點坐標(biāo)為(0,b),與x軸的交點坐標(biāo)為 .
(4)用函數(shù)觀點看方程(組)與不等式
①任何一元一次方程都可以轉(zhuǎn)化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:一次函數(shù)y=kx+b(k,b為常數(shù),k≠0),當(dāng)y=0時,求相應(yīng)的自變量的值,從圖象上看,相當(dāng)于已知直線y=kx+b,確定它與x軸交點的橫坐標(biāo).
②二元一次方程組 對應(yīng)兩個一次函數(shù),于是也對應(yīng)兩條直線,從“數(shù)”的角度看,解方程組相當(dāng)于考慮自變量為何值時兩個函數(shù)值相等,以及這兩個函數(shù)值是何值;從“形”的角度看,解方程組相當(dāng)于確定兩條直線的交點的坐標(biāo).
③任何一元一次不等式都可以轉(zhuǎn)化ax+b>0或ax+b<0(a、b為常數(shù),a≠0)的形式,解一元一次不等式可以看做:當(dāng)一次函數(shù)值大于0或小于0時,求自變量相應(yīng)的取值范圍.
8.反比例函數(shù)
(1)反比例函數(shù)
如果 (k是常數(shù),k≠0),那么y叫做x的反比例函數(shù).
(2)反比例函數(shù)的圖象
反比例函數(shù)的圖象是雙曲線.
(3)反比例函數(shù)的性質(zhì)
①當(dāng)k>0時,圖象的兩個分支分別在第一、三象限內(nèi),在各自的象限內(nèi),y隨x的增大而減?。?br/>②當(dāng)k<0時,圖象的兩個分支分別在第二、四象限內(nèi),在各自的象限內(nèi),y隨x的增大而增大.
③反比例函數(shù)圖象關(guān)于直線y=±x對稱,關(guān)于原點對稱.
(4)k的兩種求法
①若點(x0,y0)在雙曲線 上,則k=x0y0.
②k的幾何意義:
若雙曲線 上任一點A(x,y),AB⊥x軸于B,則S△AOB
(5)正比例函數(shù)和反比例函數(shù)的交點問題
若正比例函數(shù)y=k1x(k1≠0),反比例函數(shù) ,則
當(dāng)k1k2<0時,兩函數(shù)圖象無交點;
當(dāng)k1k2>0時,兩函數(shù)圖象有兩個交點,坐標(biāo)分別為 由此可知,正反比例函數(shù)的圖象若有交點,兩交點一定關(guān)于原點對稱.
1.二次函數(shù)
如果y=ax2+bx+c(a,b,c為常數(shù),a≠0),那么y叫做x的二次函數(shù).
幾種特殊的二次函數(shù):y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h(huán))2(a≠0).
2.二次函數(shù)的圖象
二次函數(shù)y=ax2+bx+c的圖象是對稱軸平行于y軸的一條拋物線.
由y=ax2(a≠0)的圖象,通過平移可得到y(tǒng)=a(x-h(huán))2+k(a≠0)的圖象.
3.二次函數(shù)的性質(zhì)
二次函數(shù)y=ax2+bx+c的性質(zhì)對應(yīng)在它的圖象上,有如下性質(zhì):
(1)拋物線y=ax2+bx+c的頂點是 ,對稱軸是直線 ,頂點必在對稱軸上;
(2)若a>0,拋物線y=ax2+bx+c的開口向上,因此,對于拋物線上的任意一點(x,y),當(dāng)x< 時,y隨x的增大而減??;當(dāng)x> 時,y隨x的增大而增大;當(dāng)x= ,y有最小值 ;
若a<0,拋物線y=ax2+bx+c的開口向下,因此,對于拋物線上的任意一點(x,y),當(dāng)x< ,y隨x的增大而增大;當(dāng) 時,y隨x的增大而減小;當(dāng)x= 時,y有最大值 ;
(3)拋物線y=ax2+bx+c與y軸的交點為(0,c);
(4)在二次函數(shù)y=ax2+bx+c中,令y=0可得到拋物線y=ax2+bx+c與x軸交點的情況:
當(dāng)?=b2-4ac>0,拋物線y=ax2+bx+c與x軸有兩個不同的公共點,它們的坐標(biāo)分別是 和 ,這兩點的距離為 ;當(dāng)?=0時,拋物線y=ax2+bx+c與x軸只有一個公共點,即為此拋物線的頂點 ;當(dāng)?<0時,拋物線y=ax2+bx+c與x軸沒有公共點.
4.拋物線的平移
拋物線y=a(x-h(huán))2+k與y=ax2形狀相同,位置不同.把拋物線y=ax2向上(下)、向左(右)平移,可以得到拋物線y=a(x-h(huán))2+k.平移的方向、距離要根據(jù)h、k的值來決定.
開口
二次項系數(shù)a決定二次函數(shù)圖像的開口方向和大小。
當(dāng)a>0時,二次函數(shù)圖像向上開口;
當(dāng)a時,拋物線向下開口。
|a|越大,則二次函數(shù)圖像的開口越小。
決定位置因素
一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。
當(dāng)a>0,與b同號時(即ab>0),對稱軸在y軸左; 因為對稱軸在左邊則對稱軸小于0,也就是- b/2a
當(dāng)a>0,與b異號時(即ab0),對稱軸在y軸右。因為對稱軸在右邊則對稱軸要大于0,也就是- b/2a>0,?所以b/2a要小于0,所以a、b要異號
可簡單記憶為左同右異,即當(dāng)對稱軸在y軸左時,a與b同號(即a>0,b>0或a
事實上,b有其自身的幾何意義:二次函數(shù)圖像與y軸的交點處的該二次函數(shù)圖像切線的函數(shù)解析式(一次函數(shù))的斜率k的值??赏ㄟ^對二次函數(shù)求導(dǎo)得到。?
擴展資料
二次函數(shù)y=ax2,y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c(各式中,a≠0)的圖像形狀相同,只是位置不同,它們的頂點坐標(biāo)及對稱軸如下表:
y=ax2 (0,0) x=0
y=ax2+K (0,K) x=0
y=a(x-h)2 (h,0) x=h
y=a(x-h)2+k (h,k) x=h
y=ax2+bx+c (-b/2a,(4ac-b^2);/4a)x=-b/2a
一次函數(shù)是函數(shù)中的一種,一般形如y=kx+b(k,b是常數(shù),k≠0),其中x是自變量,y是因變量。特別地,當(dāng)b=0時,y=kx(k為常數(shù),k≠0),y叫做x的正比例函數(shù)(direct proportion function)。 一次函數(shù)及其圖象是初中代數(shù)的重要內(nèi)容,也是高中解析幾何的基石,更是中考的重點考查內(nèi)容。
三角函數(shù)就是邊與邊的比值~在綜合體里一般起輔助作用~
正弦(sin)等于對邊比斜邊;
余弦(cos)等于鄰邊比斜邊;
正切(tan)等于對邊比鄰邊;
余切(cot)等于鄰邊比對邊;
正割(sec)等于斜邊比鄰邊;
余割(csc)等于斜邊比對邊.
A
0°
30°
45°
60°
90°
sinA
0
1/2
√2/2
√3/2
1
cosA
1
√3/2
√2/2
1/2
0
tanA
0
√3/3
1
√3
None
cotA
None
√3
1
√3/3
0
這是常見的三角函數(shù)~
三角函數(shù)博大精深~一句兩句怎么講的清~
阿妮醬就去請老師教吧~
45°的正弦,余弦,正切值依次是根號2/2,根號2/2,1
30°的正弦,余弦,正切值依次是根號3/2,1/2,根號3
兩角和公式
sin(A+B)
=
sinAcosB+cosAsinB
sin(A-B)
=
sinAcosB-cosAsinB
cos(A+B)
=
cosAcosB-sinAsinB
cos(A-B)
=
cosAcosB+sinAsinB
積化和差
sinasinb
=
-
[cos(a+b)-cos(a-b)]
cosacosb
=
[cos(a+b)+cos(a-b)]
sinacosb
=
[sin(a+b)+sin(a-b)]
cosasinb
=
[sin(a+b)-sin(a-b)]
還需要什么跟我說
二次函數(shù),一次函數(shù)都屬于冪函數(shù)的一種 冪函數(shù):y=x^k 二次函數(shù)也就是k=1時, 一次函數(shù)是k=1時。 二次函數(shù)會比一次函數(shù)復(fù)雜一點 也是高中函數(shù)的入門課程。看函數(shù)式中的各個單項式,其中最高次數(shù)為1的就是一次函數(shù),為2的就是二次函數(shù)。
兩個未知數(shù)相乘時,這個單項式的次數(shù)按兩個未知數(shù)的指數(shù)之和計算。
例:y=3x+2、2x+y-1=0為一次函數(shù);y2=2x, y=x2+x-1, y+xy=1都是二次函數(shù)。
但 (x2/x)+y=0與x+y=0不一樣,它分母中有未知數(shù)是分式。函數(shù)的定義函數(shù)的傳統(tǒng)定義:設(shè)在某變化過程中有兩個變量x、y,如果對于x在某一范圍內(nèi)的每一個確定的值,y都有唯一確定的值與它對應(yīng),那么就稱y是x的函數(shù),x叫做自變量。我們將自變量x取值的集合叫做函數(shù)的定義域,和自變量x對應(yīng)的y的值叫做函數(shù)值,函數(shù)值的集合叫做函數(shù)的值域。函數(shù)的近代定義:設(shè)A,B都是非空的數(shù)的集合,f:x→y是從A到B的一個對應(yīng)法則,那么從A到B的映射f:A→B就叫做函數(shù),記作y=f(x),其中x∈A,y∈B,原象集合A叫做函數(shù)f(x)的定義域,象集合C叫做函數(shù)f(x)的值域,顯然有CB。
二,基本初等函數(shù):一次函數(shù),反比例函數(shù),二次函數(shù),冪函數(shù),指數(shù)函數(shù),對數(shù)函數(shù),三角函數(shù)。
一次函數(shù),反比例函數(shù),二次函數(shù)都屬于基本初等函數(shù)。
二次函數(shù)
開口方向
對稱軸
頂點
增減性
最大(?。┲?br/>y
=
ax2
a>0時,開口向上;a<0拋時,開口向下。
x=0
(0,0)
當(dāng)a>0時,在對稱軸左側(cè),y隨x的增大而減小,在對稱軸右側(cè),y隨x的增大而增大;
當(dāng)a<0時,在對稱軸左側(cè),y隨x的增大而增大,在對稱軸右側(cè),y隨x的增大而減小。
當(dāng)a>0時,當(dāng)x=0時,=0;
當(dāng)a<0時,當(dāng)x=0時,=0;
y
=
ax2+c
x=0
(0,c)
當(dāng)a>0時,當(dāng)x=0時,=c;
當(dāng)a<0時,當(dāng)x=0時,=c;
y
=
a(x-h)2
x=h
(h,0)
當(dāng)a>0時,當(dāng)x=h時,y最小=0;
當(dāng)a<0時,當(dāng)x=h時,y最大=0;
y
=
a(x-h)2
+k
x=h
(h,k)
當(dāng)a>0時,當(dāng)x=h時,y最小=k;
當(dāng)a<0時,當(dāng)x=h時,y最大=k;
y
=
ax2+bx+c
x=
(,)
當(dāng)a>0時,當(dāng)x=h時,y最小=k;
當(dāng)a<0時,當(dāng)x=h時,y最大=k;
其中h=,k=
★二次函數(shù)y
=
ax2
、y
=
ax2+c、y
=
a(x-h)2
以及y
=
a(x-h)2
+k的形狀相同,只是位置不同,相互之間可以通過平移得到,一般式y(tǒng)
=
ax2+bx+c可以通過配方化成y
=
a(x-h)2
+k的形式。
3.二次函數(shù)的解析式
二次函數(shù)解析式常見有三種形式:
?、僖话闶剑簓
=
ax2+bx+c(a、b、c是常數(shù),且a≠0)
?、陧旤c式:y
=
a(x-h)2
+k(a、h、k是常數(shù),且a≠0)
?、劢稽c式:y=a(x-x1)(
x-x2)(a、x1、x2是常數(shù),且a≠0,x1、x2是拋物線與x軸交點的橫坐標(biāo))。
★拋物線y
=
ax2
的開口大小由∣a∣決定:∣a∣越大,開口越?。花Oa∣越小,開口越大。
- 1送東陽馬生序作者最終能夠?qū)W業(yè)有成的三條理由
- 2一個口里面上班是個八,下邊是個小口,現(xiàn)在網(wǎng)絡(luò)上常用的一個字,念什
- 3跪求好看的長篇動漫
- 4土字旁和金字旁的男孩名字
- 5我初三,英語一點語法也不懂,背得1500個單詞中考大概能考多少分?
- 6我的真實故事、請大家?guī)兔?/a>
- 7我以前畫過丁老頭但是口訣忘了!我現(xiàn)在還能畫丁老頭,你可知道丁老頭的口訣嗎嗎?
- 8誰能幫我把這段話翻譯成英文···急!幫幫忙··!
- 9請問這種草的學(xué)名是什么?
- 10求以前看過的一個電影,外國的,里面就是幾個人打蜘蛛,到處跑,到處是蜘蛛,叢林里,很大的蜘蛛,到處是
- 11乙亥北行日記 老幼男女俱耘于田間 文言文翻譯
- 12黑girl與棒棒堂
- 13成都中考英語滿分是什么水平
- 14為什么騰訊上的小說在手機看不到
- 15起名胡圳炘,胡星圣,這2個名字那個好?
- 16三國群英傳之臥龍與鳳雛里的臥龍扇是不是最適合好的,感覺攻擊低了點?
- 17找一首超好聽的女聲英文歌
- 18大家好,完美國際2原來的新電信人魚服務(wù)器合到現(xiàn)在的哪個區(qū)了?
- 19武易傳奇升級攻略
- 20怎樣分析語言特點
- 21感情和情感有什么區(qū)別?
- 222013天天向上情書旁白是誰?
- 23幫我想幾個超級搞笑個性簽名,還要獨一無二,謝謝!
- 24誰能幫我造句?
- 25幫忙起個好聽又有寓意的名字唄,姓梁
- 26一天中鉛筆的影子的長度是怎樣變化的
- 27兄弟說我把你媳婦睡了是什么意思?
- 28許凱真帥用泰語怎么說?
- 29和尖峰時刻類型差不多的電影
- 30王建 不知秋思落誰家的前一句
- 初三數(shù)學(xué)二次函數(shù)知識點總結(jié)
- 初二數(shù)學(xué)函數(shù)知識點匯總
- 高三數(shù)學(xué)函數(shù)知識點總結(jié)
- 高考數(shù)學(xué)函數(shù)知識點總結(jié)
- 數(shù)學(xué)函數(shù)初二知識點
- 初中數(shù)學(xué)一次函數(shù)知識點總結(jié)
- 高考數(shù)學(xué)之函數(shù)知識點總結(jié)
- 一次函數(shù)知識點總結(jié)
- 否函數(shù)初二英語知識點總結(jié)
- 孔函數(shù)初二英語知識點總結(jié)
- 核函數(shù)初二英語知識點總結(jié)
- 楊函數(shù)初二英語知識點總結(jié)
- 初二數(shù)學(xué) 知識點總結(jié)
- 初中三角函數(shù)知識點總結(jié)
- 初中數(shù)學(xué)知識點函數(shù)
- 初中數(shù)學(xué)二次函數(shù)知識點
- 函數(shù)奇偶性知識點總結(jié)
- 三角函數(shù)的知識點總結(jié)
- 初二的數(shù)學(xué)知識點總結(jié)
- 初二下數(shù)學(xué)知識點總結(jié)
- 數(shù)學(xué)負數(shù)知識點總結(jié)
- 初中數(shù)學(xué)函數(shù)考點總結(jié)
- 初三數(shù)學(xué)二次函數(shù)的知識點
- 初1初二數(shù)學(xué)知識點總結(jié)
- 初一初二數(shù)學(xué)知識點總結(jié)
- 初一數(shù)學(xué)實數(shù)知識點總結(jié)
- 高二數(shù)學(xué)知識點總結(jié)
- 高三三角函數(shù)知識點總結(jié)
- 初中數(shù)學(xué)知識點總結(jié)
- 初三數(shù)學(xué)知識點總結(jié)
- A
- B
- C
- D
- E
- F
- G
- H
- I
- J
- K
- L
- M
- N
- O
- P
- Q
- R
- S
- T
- U
- V
- W
- X
- Y
- Z
- 鞍山星光相聲
- 愛聽評書的老人
- 愛心快板
- 艾灸一般多少錢
- 愛的稱呼相聲
- 奧特曼打相聲郭德綱
- 安徽二人轉(zhuǎn)劉曉燕婦夫
- 安徽二人轉(zhuǎn)學(xué)校
- 阿元配音集
- 愛尚音樂餐吧南寧
- 奧語評書游劍江湖
- 奧奇頻道閱讀天下
- 安康打快板
- apex三人相聲小隊
- 昂立英語好嗎
- 安徽大鼓羅通掃北第1集
- 安陽市王新剛快板
- 安徽琴書吹牛孫秀英
- 安塞大鼓俠
- 奧翔說相聲
- 安徽琴書春游
- 安徽電視臺公共頻道電話
- 安子媛快板
- 矮冬瓜說書
- 愛糧節(jié)糧的快板
- 啊歐布奧特曼全集
- 阿黛爾大鼓版
- 矮仔二人轉(zhuǎn)
- 安全生產(chǎn)法快板詞
- 奧數(shù)網(wǎng)課
- 白蛇2:青蛇劫起免費下載
- 奔馳a汽車之家
- 頒獎音樂進行曲試聽
- 悲傷曲目
- 白雪歌送武判官歸京的教學(xué)設(shè)計
- 貝樂虎兒歌app下載
- 杯弓蛇影的
- 播放卡頓
- 保健鑄鐵茶壺
- 寶可夢手游精靈覺醒
- 巴啦啦小魔仙 彩虹心石
- 百家姓ren
- 八下仁愛英語單詞表電子版
- 補腎吃什么東西啊
- 必修1物理
- 棒球大聯(lián)盟第二季
- 奔跑吧6在線觀看綜藝免費觀看
- 爆率高的山海經(jīng)
- 寶可夢id
- 寶寶扔?xùn)|西怎么辦
- 憋尿會致高血壓么
- 百年孤獨簡書
- 白蕓豆有祛濕的功效嗎
- 保護生態(tài)名言名句
- 畢業(yè)典禮的背景音樂
- 白龍馬的原身份
- 八個月的寶寶一頓輔食吃多少
- 巴啦啦小魔仙之音符寶盒全集
- 白雪歌送武判官歸京 教學(xué)設(shè)計
- 北極星小鬧鐘
- 初二數(shù)學(xué)因式分解題庫
- 曾國藩打硬仗
- 陳式太極拳38式口令
- 陳氏56太極拳音樂
- 成吉思汗打一生肖
- 倉央嘉措你見或不見
- 唱一首想家的歌廣場舞
- 刺猬紫檀檀香
- 穿越之修仙在凡人 小說
- 吃炒大米的作用與功效
- 陳式太極拳18式
- 常生廣播劇
- 沉默是金解釋
- 成吉思汗的戰(zhàn)績
- 春秋封神在線視頻觀看
- 春季美食兒歌大全
- 查看全文
- 春之聲圓舞曲作者簡介
- 彩虹兔童謠一共多少首兒歌
- 懲罰室小說
- 穿越成李元霸的小說
- 純音樂帝女花
- 暢享音樂app
- 愁斷腸是哪首歌的歌詞
- 蟲兒飛兒歌簡譜和指法
- 插翅難逃大結(jié)局
- 丑小鴨電視劇免費觀看完整版
- 創(chuàng)作清明節(jié)小詩
- 車載音樂酷狗
- 吃什么能讓心率加快
- 大學(xué)英語考試為零會掛科嗎
- 東北大學(xué)自考學(xué)位英語考試
- 大學(xué)期末英語考試滿分是多少
- 單田芳評書洪武劍俠版
- 單田芳大清官冊
- 單田芳亂世梟雄117
- 單田芳的評書努爾哈赤44
- 大河風(fēng)流單田芳評書450
- 單田芳評書說唐后傳55
- 讀五年級上冊課文英語
- 單田芳亂世梟雄68
- 電腦端英語考試有攝像頭嗎
- 典范英語三到五年級
- 單田芳曾國藩評書104集
- 單田芳評書廊坊大捷5
- 單田芳評書岳飛傳94
- 單田芳大漢風(fēng)云
- 單田芳評書張作霖99回
- 東南大學(xué)學(xué)位英語考試難嗎
- 單田芳評書封神演義34
- 單田芳亂世梟雄27評書
- 第8單元五年級英語
- 打開四年級英語作業(yè)群
- 單田芳平書全部
- 單田芳大明英烈290
- 大專學(xué)前教育三級英語考試
- 大致梗概英語作文五年級
- 單田芳亂世梟雄評書187
- 單田芳盜御馬
- 單田芳呂四娘評書白眉大俠
- 兒童故事場景描述訓(xùn)練
- 兒童勵志探索故事神話
- 兒童演講中的故事有哪些
- 兒童漫畫草編故事
- 恩惠兒童故事會
- 兒童繪本故事去滑雪全篇
- 兒童故事大人當(dāng)老師
- 兒童經(jīng)典安全故事推薦書
- 兒童故事免費在線讀
- 兒童繪本自創(chuàng)故事
- 兒童故事挖煤視頻
- 兒童故事那些感動人
- 兒童故事書本廣告
- 兒童閱讀故事可打印
- 兒童微博故事大全
- 兒童故事語文書
- 兒童故事天天聽有聲
- 兒童必備早教故事
- 兒童紅色記憶故事視頻
- 兒童愚公移山故事的精神
- 兒童童話故事剪輯
- 兒童故事英語短
- 兒童抗痘的故事
- 兒童伴讀故事帶拼音
- 兒童考前教育故事
- 兒童故事的動畫電影大全
- 兒童英雄故事評書視頻
- 兒童講故事5要素
- 兒童故事大全連播英文
- 兒童故事父女決裂
- 福州小學(xué)5年級英語試卷
- 飛躍英語5年級難不難
- 福州5年級英語課文
- 福建版英語5年級上冊
- 飛魔幻txt下載
- feel5年級英語作文
- 富川高中英語配音片段
- 富縣5年級英語下冊單詞
- 福建4年級上冊英語單詞
- 福建小學(xué)5年級英語下冊
- 福建4年級英語上冊人教版 跟讀
- 法娘都來自異世界txt
- 佛山英語5年級60頁
- fa5年級英語作文
- 法國貴族故事凡爾賽的玫瑰
- 非主流玫瑰花的葬禮故事
- 福建英語六級作文
- 豐臺高三英語一模2020
- 梵容txt下載
- 復(fù)婚txt下載
- 分手的睡前故事短篇
- 非常海淀英語4年級下聽力
- ??思{獻給愛麗絲的玫瑰故事梗概
- 父母英語作文5年級上冊
- 福建英語5年級怎么讀
- 風(fēng)向標(biāo)英語5年級
- 番禺5年級期末英語試卷
- 鳳凰紋之風(fēng)起云涌txt
- 福建英語5年級上冊課本
- 福建5年級英語上冊同步
- 官途有聲小說劉飛
- 格言太陽小說她的城
- 格里高里伊凡諾維奇小說
- 顧桑桑和秦斯的小說
- 古惑仔原著小說全集
- 國內(nèi)最大的電子書
- 古言小說人物描寫秘訣
- 古代小說戲劇專題作業(yè)
- 高校戰(zhàn)力指數(shù)小說
- 關(guān)于戰(zhàn)斗機的小說
- 關(guān)于德妃的穿越小說
- 公子連城
- 光之子小說云資源
- 廣播小說東北大仙傳奇
- 顧柔季宸希小說大結(jié)局
- 各年級各科電子書
- 觀澄是詞云
- 顧爺超給力
- 鬼神傳說
- 光之子
- 國考公務(wù)員課本
- 桂花蒸免費
- 古代spank小說皇妃和太監(jiān)
- 關(guān)于網(wǎng)紅的小說
- 高考小說閱讀常見主旨方向
- 甘肅同志小說
- 公子傾城書包
- 官道無官道無疆
- 狗狗搜索書籍小說
- 跟計適明小說相似的小說
- 后官多的小說下載
- 好看的電子書玄幻推薦
- 海賊選擇小說
- 韓松地鐵驚變在線閱讀
- 黃金漁場懶人有聲小說
- 好看的小說言情總裁吧
- 黃桃趙靜小說
- 婚姻保鮮膜在線閱讀
- 駭客伶小說
- 黑氏系列的小說
- 花火上推薦的小說有哪些
- 好看的小說兄妹現(xiàn)代
- 歡樂英雄古龍小說下載
- 紅郵筒小說
- 混沌之神維爾在線閱讀
- h換身小說
- 花神之靈之梵五小說
- 孩子是女孩的小說下載
- 黃小亂小說
- 好看的玄幻小說給點推薦
- 好看言情文筆好的小說推薦
- 紅警穿越動漫的小說排行榜前十名
- 好看古言穿越小說完結(jié)
- 幻想小說排行
- 好看的穿越小說目錄
- 好看得小說出版
- 皇后和貴妃小說
- 黑暗下品全文小說
- 好看的額恐怖小說
- 和烽火類似的都市小說
- 九省新高考英語
- 江蘇無錫高考英語試卷
- 節(jié)日句子英語模板高考
- 經(jīng)貿(mào)英語作文高考模板
- 今年溫州高考英語作文
- 交通管制高考英語
- 濟南英語高考分數(shù)
- 今年江西高考英語難度
- 今天的英語高考好嗎
- 江西高考英語練習(xí)卷
- 技能高考前廳英語
- 江蘇高考英語試卷抄襲
- 江西新高考英語分值
- 江蘇高考英語單選 模擬
- 江蘇英語高考130加
- 節(jié)日相關(guān)英語高考詞匯
- 江西高考英語卷子難度
- 江蘇高考英語難度2019
- 江蘇高考英語寫作模版
- 江蘇高考英語試音歌
- 江西高考英語必修九
- 金太陽陜西英語高考
- 簡歷英語作文模板高考
- 江蘇高考2011年英語
- 技能高考數(shù)學(xué)語文英語
- 介紹高考的作文英語
- 江蘇高考英語什么試卷
- 江蘇高考英語分數(shù)結(jié)構(gòu)
- 濟南高考英語試卷類型
- 幾歲高考英語最好呢
- 考前英語六級作文
- 看了英語四級頭大了
- 開心一笑初二英語翻譯
- 快速學(xué)習(xí)英語六級
- 考初一英語不好怎么辦呀
- 考中國醫(yī)科大學(xué)要求六級嗎
- 考到英語六級就業(yè)
- 狂k重點初三英語下冊
- 空調(diào)作用影響英語作文初三
- 科普版初一英語上冊知識點
- 恐龍 睡前故事大全
- 夸獎演講英語作文高中初三
- 渴望英語短語初三怎么寫
- 考慮做某事初一英語怎么說
- 可愛閱讀技巧英語作文初三
- 看醫(yī)生的英語作文初三
- 看劍來的配樂叫什么
- 考研英語六級加分
- 狂人執(zhí)行巨劍怎么來的
- 課課練初一英語地第58頁
- 考研英語六級訓(xùn)練
- 科比的英語作文初三
- 開學(xué)考內(nèi)容初二上英語廣州
- 開學(xué)第1課三年級下冊英語
- 快速背初一英語單詞的妙招
- 考不了英語怎么辦初二學(xué)生
- 快速發(fā)展作文模板英語初三
- 快速背初二英語單詞小妙招
- 考英語六級家教
- 考研英語六級底子
- 流利的英語
- 勵志快板簡單易學(xué)
- 李全營琴書第二集
- 兩歲孩子怎么教育
- 李菁評書大全烈火金剛
- 劉蘭芳評書楊家將第52集
- 劉濤岳云鵬說相聲
- 澧州大鼓大鬧吳府第2集
- 劉驥相聲群英薈萃完整版
- 樂亭大鼓尋陽樓
- 連連麗如評書
- 李全營琴書全劇
- 浪漫的二人轉(zhuǎn)
- 李伯清經(jīng)典評書表姐相親
- 洛棲講睡前故事
- 六年級下冊數(shù)學(xué)全品小復(fù)習(xí)
- 李霄云相聲
- 盧鑫玉浩搞笑相聲來襲
- 李伯清評書十大奇案
- 劉秀評書13
- 羅索羅布奧特曼
- 劉蘭芳評書呼家將呼楊合兵
- 六年級上冊英語學(xué)習(xí)重點
- 盧鑫相聲新勢力息屏
- 樂亭大鼓文檔
- 李金斗相聲長篇單口
- 六年級數(shù)學(xué)上冊同步輔導(dǎo)
- 柳州相聲張英杰高楓
- 羅永浩賣藝說相聲
- 涼薄淺夕的朗讀專輯
- 米小圈和李黎親是什么關(guān)系
- 米小圈里面的數(shù)學(xué)老師怎么畫
- 米小圈上學(xué)記大牛偷吃零食
- 米小圈里的車池是誰飾演的
- 米小圈的媽媽是一個嚴(yán)厲的人
- 米小圈上學(xué)記真人版李黎試演
- 米小圈和鐵頭上學(xué)記真人版
- 米小圈中國史第十節(jié)
- 米小圈上學(xué)記人物顏值天花板
- 米小圈上學(xué)記的李黎真名是什么
- 米小圈作者為什么一直貶低爸爸
- 沒學(xué)過聽力怎么考四級
- 米小圈上學(xué)記真人版李黎打扮
- 米小圈里的小演員真名潘美多
- 米小圈的閃電貓是怎么做的
- 米小圈真人版26集演員表
- 米小圈暗戀記四大美女
- 米小圈上學(xué)記真人版所有同學(xué)合照
- 米小圈把李黎畫成女魔頭的花絮
- 米小圈和李黎的真實關(guān)系是什么
- 米小圈又奇又怪博物館下
- 米小圈上學(xué)記潘美多是哪里人
- 米小圈 第一天開學(xué)遲到
- 米小圈上學(xué)記徐豆豆男神是誰
- 米小圈中的何偉媽媽長什么樣
- 米小圈上學(xué)記車馳 真名叫什么
- 邁克爾杰克遜英語作文初三
- 米小圈上學(xué)記的李黎小時候
- 米小圈李黎真人版鬼屋后續(xù)
- 米小圈里里都是墨老師的女兒嗎
- 哪個有聲書可以掙錢
- 腦苷肌肽的作用與功效
- 農(nóng)歷的月亮
- 難忘的假期作文50
- 那次玩的真高興作文300字
- 奶白菜功效
- 哪里有英語課本音頻
- 哪吒v二手車質(zhì)保
- 女神的貼身護衛(wèi)免費閱讀
- 女配步步榮華
- 女性夏季養(yǎng)生知識
- 弄潮小說 聽書
- 吶喊全篇閱讀
- n-1是奇數(shù)還是偶數(shù)
- 內(nèi)心煩躁想哭
- 南通大學(xué)醫(yī)學(xué)院分數(shù)線
- 男朋友生日文案高級
- 泥濘小說全文免費閱
- 女性生殖健康檢查
- 鬧鐘聲音設(shè)置
- 年輕的朋友電影
- 孽債2電視劇
- 你好安怡電視劇第五集
- 女演員英語怎么讀
- 嗯唱兒歌放寶寶照片
- 逆水寒轉(zhuǎn)職業(yè)
- 難過的句子說說心情 心情不好
- 尿酸高的人可以吃毛豆嗎
- 南非英語發(fā)音標(biāo)準(zhǔn)嗎?
- 寧鄉(xiāng)天氣預(yù)報30天查詢
- 甌北英語高考輔導(dǎo)
- 歐文英語高考禮物
- 甌海英語高考排名
- 歐文英語高考聽力
- 歐美英語高考聽力
- 偶像英語作文高考
- 歐文英語高考成績
- 歐文幾號高考英語
- optic英語閱讀高考
- 歐瑪高考英語
- optimism高考英語作文
- oppo英語高考技巧
- 甌海英語高考備考
- oppo英語高考翻譯
- 歐美高考英語比重
- 歐陽娜娜英語高考
- 歐洲英語高考時間
- 歐洲高考英語試卷
- 偶像高考英語作文
- 歐美人高考英語
- oppo英語高考時間
- oppo英語高考2022
- o高考英語作文
- online learning高考英語
- 歐洲留學(xué)高考英語
- o高考英語pte
- 歐老師高考英語
- 甌海英語高考加分
- 甌海英語高考輔導(dǎo)
- occasion高考英語作文
- 飄香電影網(wǎng)
- 葡萄變軟急救方法
- 破曉有聲
- 漂亮的李慧珍21集免費觀看
- 剖宮產(chǎn)術(shù)后的護理問題及護理措施
- 平安旅游險
- 泡沫之夏3小說
- 平凡的世界張寶慶
- 泡腳醋的功效與作用
- 平衡車價格
- 破釜沉舟電影
- 炮灰晉級計劃書下載
- 皮皮魯傳在線閱讀
- 潘多拉魔盒電影
- 朋友生日祝福古文
- pojavlauncher
- 漂流記少年派
- 胖的英語翻譯
- 貧富人生電視劇全集
- 匹多莫德的功效與作用
- 評書俠侶情仇在線聽
- 怦然心動漫畫在線閱讀
- 蘋果醋的作用與功效
- 配自拍的精致句子
- 偏偏寵愛短劇免費觀看
- 排排坐吃果果幼兒歌曲大全
- 平和縣
- 瓢蟲雷迪第三季中文版免費觀看
- 培訓(xùn)在線試聽
- 盤龍免費玄幻小說
- 全國高考河南英語試卷
- 全球高考的英語名句
- 去年英語高考天津作文
- 全國高考英語試卷排名
- 全國高考文科英語試卷
- 全國高考英語閱讀幾篇
- 青島高考英語分值分配
- 青海高考英語口試報名
- 全品高考英語wj
- 全國2020英語高考情況
- 全國高考ii卷英語
- 青海高考英語試卷2021
- 去年英語試卷高考難度
- 全國高考英語考綱2017
- 秦英高考英語作文
- 全國高考英語2022范文
- 全國英語高考b卷
- 全國高考英語詞組
- 勸說作文模板英語高考
- 全國高考英語改錯2007
- 全民健身英語作文高考
- 去年春季高考英語試卷
- 全國高考英語完形
- 欽州2021高考英語滿分
- 青島2022高考英語難度
- 青島高考英語考試
- 曲靖高考英語咨詢熱線
- 全國哪里英語高考最難
- 全國高考哪兒英語最難
- 全國統(tǒng)考2021高考英語
- 任永奇大鼓
- 儒林外史評書播講
- 任劍南與仙音劇情觸發(fā)方法
- 任重也要說相聲
- 熱愛地球快板
- 人際溝通相聲
- 如何考相聲學(xué)院
- 融合相聲大全
- 任丘大鼓會掠影
- 仁懷大鼓全集大全免費聽
- 任南飛音樂
- 如何看南音的譜
- 日本國的由來相聲
- 如同西甲二人轉(zhuǎn)
- 瑞安馬嶼唱溫州鼓詞鄭福媚
- run哥搞笑相聲
- 仁壽相聲全集
- 如何寫影評書免費閱讀
- 日本笛子大鼓演奏
- 任二大鼓直播
- 任曉祥評書收聽
- 瑞安鼓詞大
- 如此家長金霏相聲臺詞
- 日本大鼓意思
- 日照快板培訓(xùn)
- 渃桑相聲表
- 如今相聲界輩分最大的人
- 如何是好相聲兒童
- 儒林外史評書多少回
- 阮健相聲
- 聲音英語四級作文模板
- 色弱的孩子怎么學(xué)英語
- 石鵬雷英語四級
- 什么軟件可以播放孩子英語
- 蔬菜幼兒英語學(xué)習(xí)
- 山西英語四級延期嗎
- 什么口才適合孩子學(xué)英語
- 暑假假期如何教育孩子英語
- 雙人有趣的游戲兒童故事
- 孫子兵兒童故事
- 少兒早教英語顏色的認識
- 上午的英語四級難
- 書籍兒童偵探故事
- 司法考試兒童故事推薦
- 適合孩子英語詩歌朗誦
- 薩達姆怎么教孩子學(xué)英語
- 水果英語兒歌早教3歲
- 蘇教版 英語9年級課文
- 失學(xué)兒童早教英語兒歌大全
- 上了高中英語很差怎么復(fù)習(xí)
- 三一英語考試內(nèi)容
- 適合男孩子練習(xí)英語
- 十歲孩子初學(xué)英語
- 適合五歲孩子學(xué)習(xí)英語
- 山東鄆城初中英語
- 蘇教版初中英語8年級
- 暑假給不給孩子學(xué)英語
- 是否應(yīng)該留在孩子身邊英語
- 暑假怎么帶孩子閱讀英語
- 四歲半孩子說英語
- 天線寶寶有多少歲了英語
- 推薦收藏的寶寶英語學(xué)習(xí)網(wǎng)
- 胎教給寶寶讀英語好處大嗎
- 她每次喂兩個寶寶英語
- 天線寶寶英語版原版音頻
- 天現(xiàn)寶寶的英語怎么說
- 它們的寶寶很少英語怎么說
- 天線寶寶之歌英語怎么說
- 天線寶寶紅色的叫什么英語
- 聽寶寶輕松說英語怎么說
- 天線寶寶學(xué)英語第10集
- 聽到啦寶寶的英語怎么說
- 桃子和寶寶用英語怎么說
- 它喜歡豌豆寶寶英語怎么說
- 天天寶寶用英語怎么說
- 天線寶寶第三季英語
- 她說她是個寶寶英語怎么說
- 天線寶寶的英語怎么說
- 天線寶寶英語版20集
- 特別小的寶寶上英語課
- 她現(xiàn)在已經(jīng)有了寶寶英語
- 聽寶寶說英語英文怎么說
- 兔年寶寶乳名大全英語怎么說
- 她比寶寶大兩歲英語
- 天騏小寶寶英語怎么打
- 天才寶寶教英語怎么說呢
- 臺灣寶寶說英語怎么說的
- 湯姆看見了北極熊寶寶英語
- 填英語還是小寶寶的時候
- 糖果英語可以用作寶寶名嗎
- 武威二中相聲
- 王小倩徐四二人轉(zhuǎn)
- 溫州鼓詞李享逃難全集
- 魏三二人轉(zhuǎn)真好看
- 溫州鼓詞徐玉燕陳十四收妖
- 王岳云鵬和于謙的相聲
- 王謙祥李增瑞經(jīng)典相聲起解
- 溫州鼓詞蝴蝶情緣4集
- 王佩元的數(shù)來寶
- 五一節(jié)表演的相聲
- 溫州鼓詞拜月亭完整版
- 文濤講相聲
- 萬米客艙變身相聲茶館
- 我學(xué)會了快板作文結(jié)尾
- 五常市二人轉(zhuǎn)劇場
- 我在喜馬拉雅這里說評書
- 武鄉(xiāng)琴書大換房
- 五月清音
- 威海清音少兒花藝
- 皖逗組合相聲
- 我們的時光現(xiàn)場大鼓
- 王許明相聲師父是誰
- 王胖子買驢天津快板
- 溫州鼓詞大全卓文君
- 我來代言相聲
- 舞蹈快板隊
- 王曉華唱的二人轉(zhuǎn)
- 溫州鼓詞對唱錢玉蓮
- 文藝相聲推薦
- 王東姜大美二人轉(zhuǎn)寫書
- 相聲老爸跑了
- 洗澡相聲演員
- 校園集體舞青春飛揚快板
- 相聲劉偉全集
- 相聲郭德綱于謙的夜行記
- 相聲名家于世
- 相聲名家楊志剛徒弟簡介
- 相聲楊志剛是誰
- 相聲演員武福星現(xiàn)在忙啥
- 相聲劇本關(guān)于關(guān)愛的
- 相聲歪唱太平歌詞的原作者
- 相聲新勢力bang
- 相聲二大爺欺負小孩
- 新相聲與傳統(tǒng)相聲不同
- 相聲苗阜曹操
- 相聲魔獸
- 向相聲前輩致敬
- 薛定山征西評書
- 相聲說一個
- 新相聲培訓(xùn)班
- 相聲單口開場
- 相聲有新人選人
- 相聲小品推文
- 相聲演員侯震是誰的孩子
- 相聲膽小
- 相聲人光頭是誰
- 新封神榜電視劇版評書
- 相聲獅子王
- 相聲點評紅樓
- 相聲唱歌愛拼才會贏
- 應(yīng)該小說只為愛
- 有部小說主角金丹期練了冰火雙環(huán)
- 醫(yī)學(xué)是什么電子書
- 有聲在線小說的
- 一女多男小說女強男強
- 擁有天使血統(tǒng)的小說
- 影后懷孕以后小說無彈窗
- 有本世子妃小說男主姓鳳
- 月蝕本子里面小說
- 顏值屬性流小說
- 丫鬟重生嫁給王爺小說
- 言情小說吧姐弟戀
- 有聲小說留守女人在線播放
- 有聲小說歡樂三國志下載
- 宇宙戰(zhàn)艦全部小說
- 養(yǎng)殖種植類小說
- 娛樂之荒野食神鍵盤
- 搖搖兔的小說
- 玉的玄幻小說
- 一見傾心一生不離小說
- 有一本男主角叫李元昊的小說
- 陰陽代理人下載八零
- 有鳳陵月的玄幻小說
- 原創(chuàng)小說題材
- 有石原里美的小說
- 引郎入室古靈在線閱讀
- 異動之刻6護玄
- 與君知小說
- 言情都市小說云微
- 有沒有講種田小說推薦