初二數(shù)學(xué)函數(shù)知識點總結(jié)

初中三角函數(shù)知識點
1個回答2025-04-12 07:11

1、勾股定理:直角三角形兩直角邊a、b的平方和等于斜邊c的平方。

2、在Rt△ABC中,∠C為直角,則∠A的銳角三角函數(shù)為(∠A可換成∠B)

3、任意銳角的正弦值等于它的余角的余弦值;任意銳角的余弦值等于它的余角的正弦值。

4、任意銳角的正切值等于它的余角的余切值;任意銳角的余切值等于它的余角的正切值。

5、正弦、余弦的增減性:當(dāng)0°≤α≤90°時,sinα隨α的增大而增大,cosα隨α的增大而減小。

6、正切、余切的增減性: 當(dāng)0°<α<90°時,tanα隨α的增大而增大,cotα隨α的增大而減小。

7、初中三角函數(shù)兩角和與差的三角函數(shù):

cos(αβ)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβsinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(αβ)=(tanαtanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1tanα·tanβ)

8、初中三角函數(shù)倍角公式:

sin(2α)=2sinα·cosα

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

9、初中三角函數(shù)三倍角公式:

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

10、初中三角函數(shù)半角公式:

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1cosα)/2

tan^2(α/2)=(1-cosα)/(1cosα)

tan(α/2)=sinα/(1cosα)=(1-cosα)/sinα

11、初中三角函數(shù)萬能公式:

sinα=2tan(α/2)/[1tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

12、初中三角函數(shù)積化和差公式:

sinα·cosβ=(1/2)[sin(αβ)sin(α-β)]

cosα·sinβ=(1/2)[sin(αβ)-sin(α-β)]

cosα·cosβ=(1/2)[cos(αβ)cos(α-β)]

sinα·sinβ=-(1/2)[cos(αβ)-cos(α-β)]

13、初中三角函數(shù)和差化積公式:

sinαsinβ=2sin[(αβ)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(αβ)/2]sin[(α-β)/2]

cosαcosβ=2cos[(αβ)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(αβ)/2]sin[(α-β)/2]

初中數(shù)學(xué)函數(shù)題
1個回答2025-03-04 00:10
(1)(m-a)x2+2bx+(m+a)=0有兩個相等的實數(shù)根。
△=(2b)2-4(m+a)(m-a)=4b2-4m2+4a2=0
a2+b2=m2
△ABM是直角三角形
又因為A、B是函數(shù)與X軸交點,因此關(guān)于對稱軸對稱
而M在對稱軸上,因此AM=BM。即a=b
三角形為等腰直角三角形
M(-2,-1),M到X軸距離為1。三角形斜邊上的中線為1
因此AB=2。所以A(-3,0)、B(-1,0)
利用交點式,設(shè)二次函數(shù)表達式為y=a(x+3)(x+1)
代入M坐標(biāo),-a=-1,a=1.表達式為y=(x+3)(x+1)=x2+4x+3
(2)設(shè)直線CD為:y=n
則圓心到X軸距離為|n|
C、D兩點到圓心距離也為|n|
因為C、D關(guān)于對稱軸X=-2對稱,因此圓心一定在X=-2上,圓心坐標(biāo)(-2,n)
所以C(-2+n,n) D(-2-n,n)
代入二次函數(shù)表達式
(-2+n)2+4(-2+n)+3=n
n2-n-1=0
n1=(1+√5)/2,n2=(1-√5)/2
圓心坐標(biāo)(-2,(1+√5)/2)或(-2,(1-√5)/2)
初中數(shù)學(xué)函數(shù)知識點
2個回答2022-10-01 12:17
1.常量和變量
在某變化過程中可以取不同數(shù)值的量,叫做變量.在某變化過程中保持同一數(shù)值的量或數(shù),叫常量或常數(shù).
2.函數(shù)
設(shè)在一個變化過程中有兩個變量x與y,如果對于x在某一范圍的每一個值,y都有唯一的值與它對應(yīng),那么就說x是自變量,y是x的函數(shù).
3.自變量的取值范圍
(1)整式:自變量取一切實數(shù).
(2)分式:分母不為零.
(3)偶次方根:被開方數(shù)為非負數(shù).
(4)零指數(shù)與負整數(shù)指數(shù)冪:底數(shù)不為零.
4.函數(shù)值
對于自變量在取值范圍內(nèi)的一個確定的值,如當(dāng)x=a時,函數(shù)有唯一確定的對應(yīng)值,這個對應(yīng)值,叫做x=a時的函數(shù)值.
5.函數(shù)的表示法
(1)解析法;(2)列表法;(3)圖象法.
6.函數(shù)的圖象
把自變量x的一個值和函數(shù)y的對應(yīng)值分別作為點的橫坐標(biāo)和縱坐標(biāo),可以在平面直角坐標(biāo)系內(nèi)描出一個點,所有這些點的集合,叫做這個函數(shù)的圖象.
由函數(shù)解析式畫函數(shù)圖象的步驟:
(1)寫出函數(shù)解析式及自變量的取值范圍;
(2)列表:列表給出自變量與函數(shù)的一些對應(yīng)值;
(3)描點:以表中對應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點;
(4)連線:用平滑曲線,按照自變量由小到大的順序,把所描各點連接起來.
7.一次函數(shù)
(1)一次函數(shù)
如果y=kx+b(k、b是常數(shù),k≠0),那么y叫做x的一次函數(shù).
特別地,當(dāng)b=0時,一次函數(shù)y=kx+b成為y=kx(k是常數(shù),k≠0),這時,y叫做x的正比例函數(shù).
(2)一次函數(shù)的圖象
一次函數(shù)y=kx+b的圖象是一條經(jīng)過(0,b)點和 點的直線.
特別地,正比例函數(shù)圖象是一條經(jīng)過原點的直線.
需要說明的是,在平面直角坐標(biāo)系中,“直線”并不等價于“一次函數(shù)y=kx+b(k≠0)的圖象”,因為還有直線y=m(此時k=0)和直線x=n(此時k不存在),它們不是一次函數(shù)圖象.
(3)一次函數(shù)的性質(zhì)
當(dāng)k>0時,y隨x的增大而增大;當(dāng)k<0時,y隨x的增大而減小.
直線y=kx+b與y軸的交點坐標(biāo)為(0,b),與x軸的交點坐標(biāo)為 .
(4)用函數(shù)觀點看方程(組)與不等式
①任何一元一次方程都可以轉(zhuǎn)化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:一次函數(shù)y=kx+b(k,b為常數(shù),k≠0),當(dāng)y=0時,求相應(yīng)的自變量的值,從圖象上看,相當(dāng)于已知直線y=kx+b,確定它與x軸交點的橫坐標(biāo).
②二元一次方程組 對應(yīng)兩個一次函數(shù),于是也對應(yīng)兩條直線,從“數(shù)”的角度看,解方程組相當(dāng)于考慮自變量為何值時兩個函數(shù)值相等,以及這兩個函數(shù)值是何值;從“形”的角度看,解方程組相當(dāng)于確定兩條直線的交點的坐標(biāo).
③任何一元一次不等式都可以轉(zhuǎn)化ax+b>0或ax+b<0(a、b為常數(shù),a≠0)的形式,解一元一次不等式可以看做:當(dāng)一次函數(shù)值大于0或小于0時,求自變量相應(yīng)的取值范圍.
8.反比例函數(shù)
(1)反比例函數(shù)
如果 (k是常數(shù),k≠0),那么y叫做x的反比例函數(shù).
(2)反比例函數(shù)的圖象
反比例函數(shù)的圖象是雙曲線.
(3)反比例函數(shù)的性質(zhì)
①當(dāng)k>0時,圖象的兩個分支分別在第一、三象限內(nèi),在各自的象限內(nèi),y隨x的增大而減?。?br/>②當(dāng)k<0時,圖象的兩個分支分別在第二、四象限內(nèi),在各自的象限內(nèi),y隨x的增大而增大.
③反比例函數(shù)圖象關(guān)于直線y=±x對稱,關(guān)于原點對稱.
(4)k的兩種求法
①若點(x0,y0)在雙曲線 上,則k=x0y0.
②k的幾何意義:
若雙曲線 上任一點A(x,y),AB⊥x軸于B,則S△AOB

(5)正比例函數(shù)和反比例函數(shù)的交點問題
若正比例函數(shù)y=k1x(k1≠0),反比例函數(shù) ,則
當(dāng)k1k2<0時,兩函數(shù)圖象無交點;
當(dāng)k1k2>0時,兩函數(shù)圖象有兩個交點,坐標(biāo)分別為 由此可知,正反比例函數(shù)的圖象若有交點,兩交點一定關(guān)于原點對稱.

1.二次函數(shù)
如果y=ax2+bx+c(a,b,c為常數(shù),a≠0),那么y叫做x的二次函數(shù).
幾種特殊的二次函數(shù):y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h(huán))2(a≠0).
2.二次函數(shù)的圖象
二次函數(shù)y=ax2+bx+c的圖象是對稱軸平行于y軸的一條拋物線.
由y=ax2(a≠0)的圖象,通過平移可得到y(tǒng)=a(x-h(huán))2+k(a≠0)的圖象.
3.二次函數(shù)的性質(zhì)
二次函數(shù)y=ax2+bx+c的性質(zhì)對應(yīng)在它的圖象上,有如下性質(zhì):
(1)拋物線y=ax2+bx+c的頂點是 ,對稱軸是直線 ,頂點必在對稱軸上;
(2)若a>0,拋物線y=ax2+bx+c的開口向上,因此,對于拋物線上的任意一點(x,y),當(dāng)x< 時,y隨x的增大而減??;當(dāng)x> 時,y隨x的增大而增大;當(dāng)x= ,y有最小值 ;
若a<0,拋物線y=ax2+bx+c的開口向下,因此,對于拋物線上的任意一點(x,y),當(dāng)x< ,y隨x的增大而增大;當(dāng) 時,y隨x的增大而減小;當(dāng)x= 時,y有最大值 ;
(3)拋物線y=ax2+bx+c與y軸的交點為(0,c);
(4)在二次函數(shù)y=ax2+bx+c中,令y=0可得到拋物線y=ax2+bx+c與x軸交點的情況:
當(dāng)?=b2-4ac>0,拋物線y=ax2+bx+c與x軸有兩個不同的公共點,它們的坐標(biāo)分別是 和 ,這兩點的距離為 ;當(dāng)?=0時,拋物線y=ax2+bx+c與x軸只有一個公共點,即為此拋物線的頂點 ;當(dāng)?<0時,拋物線y=ax2+bx+c與x軸沒有公共點.
4.拋物線的平移
拋物線y=a(x-h(huán))2+k與y=ax2形狀相同,位置不同.把拋物線y=ax2向上(下)、向左(右)平移,可以得到拋物線y=a(x-h(huán))2+k.平移的方向、距離要根據(jù)h、k的值來決定.
初中二次函數(shù)知識點有哪些?
2個回答2022-09-10 04:06

開口

二次項系數(shù)a決定二次函數(shù)圖像的開口方向和大小。

當(dāng)a>0時,二次函數(shù)圖像向上開口;

當(dāng)a時,拋物線向下開口。

|a|越大,則二次函數(shù)圖像的開口越小。

決定位置因素

一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。

當(dāng)a>0,與b同號時(即ab>0),對稱軸在y軸左; 因為對稱軸在左邊則對稱軸小于0,也就是- b/2a

當(dāng)a>0,與b異號時(即ab0),對稱軸在y軸右。因為對稱軸在右邊則對稱軸要大于0,也就是- b/2a>0,?所以b/2a要小于0,所以a、b要異號

可簡單記憶為左同右異,即當(dāng)對稱軸在y軸左時,a與b同號(即a>0,b>0或a

事實上,b有其自身的幾何意義:二次函數(shù)圖像與y軸的交點處的該二次函數(shù)圖像切線的函數(shù)解析式(一次函數(shù))的斜率k的值??赏ㄟ^對二次函數(shù)求導(dǎo)得到。?

擴展資料

二次函數(shù)y=ax2,y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c(各式中,a≠0)的圖像形狀相同,只是位置不同,它們的頂點坐標(biāo)及對稱軸如下表:

y=ax2 (0,0) x=0

y=ax2+K (0,K) x=0

y=a(x-h)2 (h,0) x=h

y=a(x-h)2+k (h,k) x=h

y=ax2+bx+c (-b/2a,(4ac-b^2);/4a)x=-b/2a

初中數(shù)學(xué)函數(shù)知識點
2個回答2022-09-26 04:38
初中的函數(shù)包括:正比例函數(shù),反比例函數(shù),一次函數(shù),二次函數(shù).幾乎同樣的方式學(xué)習(xí),即:定義\圖象與性質(zhì),應(yīng)用.
一次函數(shù)有趣知識?
1個回答2024-03-04 12:35

一次函數(shù)是函數(shù)中的一種,一般形如y=kx+b(k,b是常數(shù),k≠0),其中x是自變量,y是因變量。特別地,當(dāng)b=0時,y=kx(k為常數(shù),k≠0),y叫做x的正比例函數(shù)(direct proportion function)。 一次函數(shù)及其圖象是初中代數(shù)的重要內(nèi)容,也是高中解析幾何的基石,更是中考的重點考查內(nèi)容。

初中數(shù)學(xué)三角函數(shù)知識
1個回答2022-12-08 15:52
月餅醬是初三黨~還沒有深入學(xué)習(xí)~
三角函數(shù)就是邊與邊的比值~在綜合體里一般起輔助作用~
 正弦(sin)等于對邊比斜邊;
  余弦(cos)等于鄰邊比斜邊;
  正切(tan)等于對邊比鄰邊;
  余切(cot)等于鄰邊比對邊;
  正割(sec)等于斜邊比鄰邊;
  余割(csc)等于斜邊比對邊.
A

30°
45°
60°
90°
sinA
0
1/2
√2/2
√3/2
1
cosA
1
√3/2
√2/2
1/2
0
tanA
0
√3/3
1
√3
None
cotA
None
√3
1
√3/3
0
這是常見的三角函數(shù)~
三角函數(shù)博大精深~一句兩句怎么講的清~
阿妮醬就去請老師教吧~
初中的三角函數(shù)公式表
1個回答2025-01-14 07:41
30°的正弦,余弦,正切值依次是1/2,根號3/2,根號3/3
45°的正弦,余弦,正切值依次是根號2/2,根號2/2,1
30°的正弦,余弦,正切值依次是根號3/2,1/2,根號3
兩角和公式
sin(A+B)
=
sinAcosB+cosAsinB
sin(A-B)
=
sinAcosB-cosAsinB
cos(A+B)
=
cosAcosB-sinAsinB
cos(A-B)
=
cosAcosB+sinAsinB
積化和差
sinasinb
=
-
[cos(a+b)-cos(a-b)]
cosacosb
=
[cos(a+b)+cos(a-b)]
sinacosb
=
[sin(a+b)+sin(a-b)]
cosasinb
=
[sin(a+b)-sin(a-b)]
還需要什么跟我說
初三二次函數(shù)辨析?
1個回答2025-02-03 23:56

二次函數(shù),一次函數(shù)都屬于冪函數(shù)的一種 冪函數(shù):y=x^k 二次函數(shù)也就是k=1時, 一次函數(shù)是k=1時。 二次函數(shù)會比一次函數(shù)復(fù)雜一點 也是高中函數(shù)的入門課程。看函數(shù)式中的各個單項式,其中最高次數(shù)為1的就是一次函數(shù),為2的就是二次函數(shù)。

兩個未知數(shù)相乘時,這個單項式的次數(shù)按兩個未知數(shù)的指數(shù)之和計算。

例:y=3x+2、2x+y-1=0為一次函數(shù);y2=2x, y=x2+x-1, y+xy=1都是二次函數(shù)。

但 (x2/x)+y=0與x+y=0不一樣,它分母中有未知數(shù)是分式。函數(shù)的定義函數(shù)的傳統(tǒng)定義:設(shè)在某變化過程中有兩個變量x、y,如果對于x在某一范圍內(nèi)的每一個確定的值,y都有唯一確定的值與它對應(yīng),那么就稱y是x的函數(shù),x叫做自變量。我們將自變量x取值的集合叫做函數(shù)的定義域,和自變量x對應(yīng)的y的值叫做函數(shù)值,函數(shù)值的集合叫做函數(shù)的值域。函數(shù)的近代定義:設(shè)A,B都是非空的數(shù)的集合,f:x→y是從A到B的一個對應(yīng)法則,那么從A到B的映射f:A→B就叫做函數(shù),記作y=f(x),其中x∈A,y∈B,原象集合A叫做函數(shù)f(x)的定義域,象集合C叫做函數(shù)f(x)的值域,顯然有CB。

二,基本初等函數(shù):一次函數(shù),反比例函數(shù),二次函數(shù),冪函數(shù),指數(shù)函數(shù),對數(shù)函數(shù),三角函數(shù)。

一次函數(shù),反比例函數(shù),二次函數(shù)都屬于基本初等函數(shù)。

初中數(shù)學(xué)二次函數(shù)知識點詳細
1個回答2022-10-06 02:31
二次函數(shù)的圖象與性質(zhì)
二次函數(shù)
開口方向
對稱軸
頂點
增減性
最大(?。┲?br/>y
=
ax2
a>0時,開口向上;a<0拋時,開口向下。
 
x=0
(0,0)
當(dāng)a>0時,在對稱軸左側(cè),y隨x的增大而減小,在對稱軸右側(cè),y隨x的增大而增大;
當(dāng)a<0時,在對稱軸左側(cè),y隨x的增大而增大,在對稱軸右側(cè),y隨x的增大而減小。
當(dāng)a>0時,當(dāng)x=0時,=0;
當(dāng)a<0時,當(dāng)x=0時,=0;
y
=
ax2+c
x=0
(0,c)
當(dāng)a>0時,當(dāng)x=0時,=c;
當(dāng)a<0時,當(dāng)x=0時,=c;
y
=
a(x-h)2
x=h
(h,0)
當(dāng)a>0時,當(dāng)x=h時,y最小=0;
當(dāng)a<0時,當(dāng)x=h時,y最大=0;
y
=
a(x-h)2
+k
x=h
(h,k)
當(dāng)a>0時,當(dāng)x=h時,y最小=k;
當(dāng)a<0時,當(dāng)x=h時,y最大=k;
y
=
ax2+bx+c
x=
(,)
當(dāng)a>0時,當(dāng)x=h時,y最小=k;
當(dāng)a<0時,當(dāng)x=h時,y最大=k;
其中h=,k=
  ★二次函數(shù)y
=
ax2
、y
=
ax2+c、y
=
a(x-h)2
以及y
=
a(x-h)2
+k的形狀相同,只是位置不同,相互之間可以通過平移得到,一般式y(tǒng)
=
ax2+bx+c可以通過配方化成y
=
a(x-h)2
+k的形式。
  3.二次函數(shù)的解析式
  二次函數(shù)解析式常見有三種形式:
 ?、僖话闶剑簓
=
ax2+bx+c(a、b、c是常數(shù),且a≠0)
 ?、陧旤c式:y
=
a(x-h)2
+k(a、h、k是常數(shù),且a≠0)
 ?、劢稽c式:y=a(x-x1)(
x-x2)(a、x1、x2是常數(shù),且a≠0,x1、x2是拋物線與x軸交點的橫坐標(biāo))。
  ★拋物線y
=
ax2
的開口大小由∣a∣決定:∣a∣越大,開口越?。花Oa∣越小,開口越大。
熱門問答